Half-Positional Objectives Recognized by Deterministic Büchi Automata

Antonio Casares

LaBRI, Université de Bordeaux

30 May 2022

Joint work with Patricia Bouyer, Mickael Randour and Pierre Vandenhove
Games and positionality
Arena: oriented graph \(\mathcal{G} = (V = (V_{\text{Eve}} \cup V_{\text{Adam}}), E, v_0) \) with edges labeled by colors in a set \(C \) and an initial vertex.

Players move a token in turns producing an infinite word \(w \in C^\omega \).
Games over graphs

Players move a token in turns producing an infinite word $w \in C^\omega$.

Output =
Games over graphs

Players move a token in turns producing an infinite word \(w \in C^\omega \).

Output = a
Games over graphs

Players move a token in turns producing an infinite word $w \in C^\omega$.

Output = ab
Games over graphs

Players move a token in turns producing an infinite word $w \in C^\omega$.

Output = $abb \ldots$
Games over graphs

Objective: Set $W \subseteq C^\omega$ of winning sequences.

Eve wins a play if $w \in W$.
Adam wins a play if $w \notin W$.

W-game = Arena + Objective W
Strategy (for Eve)

Function $\sigma : E^* \times V_{Eve} \rightarrow E$ prescribing how Eve should move depending on the past of the play.
Strategies

Strategy (for Eve)

Function $\sigma : E^* \times V_{Eve} \rightarrow E$ prescribing how Eve should move depending on the past of the play.

Positional strategy

Function

$$\sigma : V_{Eve} \rightarrow E,$$

(Eve’s choices depend exclusively on the current position).
Strategy (for Eve)

Function $\sigma : E^* \times \mathcal{V}_{Eve} \rightarrow E$ prescribing how Eve should move depending on the past of the play.

Positional strategy

Function

$$\sigma : \mathcal{V}_{Eve} \rightarrow E,$$

(Eve’s choices depend exclusively on the current position).

Winner

We say that Eve wins a \mathbb{W}-game G if she has a strategy σ such that all paths from v_0 consistent with that strategy belong to \mathbb{W}.
Positionality

Positional objective

An objective $\mathbb{W} \subseteq C^\omega$ is half-positional\(^1\) if for every \mathbb{W}-game \mathcal{G} Eve has a positional strategy σ such that

$$\text{Eve wins } \mathcal{G} \implies \text{Eve wins } \mathcal{G} \text{ using } \sigma.$$

\(^1\)In this talk positional = half-positional.
Positionality

Positional objective

An objective $\mathbb{W} \subseteq C^\omega$ is *half-positional*\(^1\) if for every \mathbb{W}-game \mathcal{G} Eve has a positional strategy σ such that

$$\text{Eve wins } \mathcal{G} \implies \text{Eve wins } \mathcal{G} \text{ using } \sigma.$$

\(^{1}\)In this talk positional = half-positional.

Bi-positional objective

An objective $\mathbb{W} \subseteq C^\omega$ is *bi-positional* if both \mathbb{W} and $C^\omega \setminus \mathbb{W}$ are half-positional.
Positionality over finite arenas

Positional objective

An objective \(W \subseteq C^\omega \) is half-positional\(^1\) over finite arenas if for every finite \(W \)-game \(G \) Eve has a positional strategy \(\sigma \) such that

\[
\text{Eve wins } G \implies \text{Eve wins } G \text{ using } \sigma.
\]

Bi-positional objective

An objective \(W \subseteq C^\omega \) is bi-positional over finite arenas if both \(W \) and \(C^\omega \setminus W \) are half-positional over finite arenas.

\(^1\)In this talk positional = half-positional.
Examples

$W = C^*(ab)^\omega$ is not positional.
Examples

▶ $W = C^*(ab)^\omega$ is not positional.

▶ $W = C^*a^4C^\omega$
Examples

▶ $W = C^*(ab)\omega$ is not positional.

▶ $W = C^*a^4C\omega$

Not positional
For $F \subseteq C$ we define

$$\text{Büchi}(F) = \{ w \in C^\omega : \text{some } c \in F \text{ appears infinitely often in } w \}.$$
For $F \subseteq C$ we define

$$\text{B"uch}(F) = \{ w \in C^\omega : \text{some } c \in F \text{ appears infinitely often in } w \}.$$
Examples

\(W = \text{Büchi}(a) \cup C^* a^2 C^\omega. \)
Examples

\[W = \text{B"{u}chi}(a) \cup C^* a^2 C^\omega. \]

You will know at the end of the talk!
Bi-positionality is quite well understood:

- Characterization of bi-positionality over finite arenas [Gimbert, Zielonka ’05].
- Characterization of bi-positionality over all arenas [Colcombet, Niwiński ’06].
Bi-positionality is quite well understood:

- Characterization of bi-positionality over finite arenas [Gimbert, Zielonka ’05].
- Characterization of bi-positionality over all arenas [Colcombet, Niwiński ’06].

But for applications in synthesis, half-positionality is more relevant!
Some known results about half-positionality

- Some sufficient conditions for half-positionality [Kopczyński ’08, BFMM ’10].
- Charact. of half-positional conditions over all arenas using universal graphs [Ohlmann ’21].
Some known results

Some known results about half-positionality

- Some sufficient conditions for half-positionality [Kopczyński ’08, BFMM ’10].
- Characterization of half-positional conditions over all arenas using universal graphs [Ohlmann ’21].

Structural characterization:

\[\forall \text{positional } \iff \text{There exists a suitable structure for any cardinal.} \]

Not effective.
Contribution

Open question

Effective characterization of positionality for ω-regular conditions.

In this work:

Main result

Effective characterization of positionality for languages recognized by deterministic Büchi automata.
Deterministic Büchi automata
In this talk, all automata will be deterministic.

Automaton \mathcal{B}

- $C = \{a, b\}$ input alphabet
- Input $= w \in C^\omega$
- $\Rightarrow = \text{Büchi transition}$

We accept a run if it visits infinitely often a Büchi transition.

$\mathcal{L}(\mathcal{B}) = \{w \in C^\omega : \mathcal{B} \text{ has an accepting run over } w\}$.
Remark: Acceptance condition is defined over transitions of the automata.
Recognizability by Büchi automata

DBA-recognizability

We say that an objective $W \subseteq C^\omega$ is **DBA-recognizable** if there is a deterministic Büchi automaton B such that

$$W = \mathcal{L}(B).$$

Remark: the class of DBA-recognizable objectives is a proper subclass of ω-regular objectives.

ω—regular $=$ Recognizable by ND-Büchi $=$ Recognizable by det. parity.
We fix an objective $W \subseteq C^\omega$.

For a finite word $u \in C^*$ we write

$$u^{-1}W = \{w \in C^\omega : uw \in W\}.$$
We fix an objective $W \subseteq C^\omega$.

For a finite word $u \in C^*$ we write

$$u^{-1}W = \{ w \in C^\omega : uw \in W \}.$$

For $u, v \in C^*$:

- $u \prec v$ if $u^{-1}W \subsetneq v^{-1}W$ (Preorder).
- $u \sim v$ if $u^{-1}W = v^{-1}W$ (Equivalence relation).
Right congruence

We fix an objective $\mathcal{W} \subseteq C^\omega$.

For a finite word $u \in C^*$ we write

$$u^{-1}\mathcal{W} = \{w \in C^\omega : uw \in \mathcal{W}\}.$$

For $u, v \in C^*$:

- $u \prec v$ if $u^{-1}\mathcal{W} \subsetneq v^{-1}\mathcal{W}$ (Preorder).
- $u \sim v$ if $u^{-1}\mathcal{W} = v^{-1}\mathcal{W}$ (Equivalence relation).

If \mathcal{W} is recognized by a Büchi automaton \mathcal{B}, we can define analogous relations between the states of \mathcal{B}.
Prefix-classifier $B_\sim = (Q, q_0, \delta : Q \times C \rightarrow Q)$:

- $Q = \{ u^{-1}W : u \in C^* \}$.
- $q_0 = \varepsilon^{-1}W$.
- $\delta(u^{-1}W, c) = (uc)^{-1}W$.

Automaton structure without acceptance condition.
Prefix-classifier \(B_\sim = (Q, q_0, \delta : Q \times C \rightarrow Q) \):

- \(Q = \{ u^{-1}W : u \in C^* \} \).
- \(q_0 = \varepsilon^{-1}W \).
- \(\delta(u^{-1}W, c) = (uc)^{-1}W \).

Automaton structure without acceptance condition.

Sometimes we can define a Büchi condition such that \(L(B_\sim) = W \), but not always (even if \(W \) is DBA-recognizable)!!

If it is possible to do so, we say that \(W \) can be recognized by its prefix-classifier.
Examples

\[W = (ab)^\omega \]

Prefix-classifier \(B_\sim \).

Büchi condition so that \(\mathcal{L}(B_\sim) = W \).
Examples

\[W = (C^* aa)^\omega \]

Prefix-classifier \(\mathcal{B}_\sim \).

We cannot define a Büchi condition over \(\mathcal{B}_\sim \) so that \(\mathcal{L}(\mathcal{B}_\sim) = W \).
\(\mathcal{W} \) is prefix-independent if \(\forall w \in C^\omega, \forall u \in C^* \)

\[w \in \mathcal{W} \iff uw \in \mathcal{W}. \]

Equivalently, if \(\mathcal{B}_\sim \) has a single state.
Example: prefix-independent conditions

\[\mathcal{W} \text{ is prefix-independent if } \forall w \in C^\omega, \forall u \in C^* \]

\[w \in \mathcal{W} \iff uw \in \mathcal{W}. \]

Equivalently, if \(B\sim \) has a single state.

Lemma

If \(\mathcal{W} \) is prefix-independent, \(\mathcal{W} \) can be recognized by its prefix-classifier if and only if

\[\mathcal{W} = \text{Büchi}(F) \text{ for some } F \subseteq C. \]

Remember: Transition based acceptance!
Three sufficient and necessary conditions for half-positionality
Condition 1: \(\prec \) is a total order

Prefix preorder \(\prec \) is total.

Lemma (Necessity of Condition 1)

If \(\prec \) is not total, \(\mathbb{W} \) is not positional over finite arenas.
Lemma (Necessity of Condition 1)

If \prec is not total, \mathcal{W} is not positional over finite arenas.

Proof: If \prec is not total, there are $u_1, u_2 \in C^*$ and $w_1, w_2 \in C^\omega$ such that:

- $u_1 w_1 \in \mathcal{W}, \quad u_2 w_1 \notin \mathcal{W}$,
- $u_2 w_2 \in \mathcal{W}, \quad u_1 w_2 \notin \mathcal{W}$.

Remark: we can make it a finite arena using ω-regularity.
We say that W is *progress-consistent* if for all $u, v \in C^*$:

$$u \prec uv \implies uv^\omega \in W.$$
Condition 2: Progress-consistency

Condition 2

We say that \(\mathbb{W} \) is progress-consistent if for all \(u, v \in C^* \):

\[u \prec uv \implies uv^\omega \in \mathbb{W}. \]

Lemma (Necessity of Condition 2)

If \(\mathbb{W} \) is not progress-consistent, it is not positional over finite arenas.
Condition 2: Progress-consistency

We say that \mathbb{W} is *progress-consistent* if for all $u, v \in C^*$:

$$u \prec uv \implies uv^\omega \in \mathbb{W}.$$

Lemma (Necessity of Condition 2)

If \mathbb{W} is not progress-consistent, it is is not positional over finite arenas.

Proof: Let u, v such that $u \prec uv$ and $uv^\omega \notin \mathbb{W}$. There is $w \in C^\omega$ s.t. $uw \notin \mathbb{W}$ but $uvw \in \mathbb{W}$.
Remark: Necessity of Conditions 1 and 2 apply to all objectives (over infinite arenas), not necessarily ω-regular.
Condition 3: Recognizability by the prefix-classifier

Condition 3

Objective W is recognizable by a Büchi automaton built on top of the prefix-classifier B_{\sim}.

Lemma (Necessity of Condition 3)

If W is not recognizable by its prefix-classifier B_{\sim}, it is not positional over finite arenas.
Condition 3: Recognizability by the prefix-classifier

Objective W is recognizable by a Büchi automaton built on top of the prefix-classifier B_\sim.

Lemma (Necessity of Condition 3)

If W is not recognizable by its prefix-classifier B_\sim, it is not positional over finite arenas.

Proof: Quite technical.
Condition 3: Recognizability by the prefix-classifier

Proof outline: \(\mathcal{W} \) an objective recognized by a DBA \(\mathcal{B} \).

1. Prefix-independent case.

Lemma

If \(|\mathcal{B}| = 1 \) (\(\mathcal{W} \) prefix-independent), then

\[
\mathcal{W} \text{ positional } \iff \mathcal{W} = \text{Büchi}(F) \text{ for some } F \subseteq C.
\]
Condition 3: Recognizability by the prefix-classifier

Proof outline: \(W \) an objective recognized by a DBA \(B \).

1. Prefix-independent case.

Lemma

If \(|B_\sim| = 1 \) (\(W \) prefix-independent), then

\[W \text{ positional } \Leftrightarrow W = \text{B"uchi}(F) \text{ for some } F \subseteq C. \]

2. General case.
 We reduce to the prefix independent case. For each equivalent class of states \([q], q \in B\) we consider the alphabet
 \[C_{[q]} = \{ u \in C^* : \delta(q, u) \in [q] \}. \]
 and the prefix-independent winning condition
 \[W_{[q]} = \{ w \in C_{[q]}^\omega : w \in q^{-1}W \}. \]
 Using the previous lemma, we show that if \(W \) is positional we can merge all states in \([q]\).
Necessity of the conditions

Conditions for half-positionality

\(\mathbb{W} \subseteq C^\omega \) a DBA-recognizable objective.

- Prefix preorder \(\preceq \) is total.
- Progress-consistency.
- Recognizability by the prefix-classifier \(\mathcal{B}_\sim \).

Proposition (Necessity of the conditions)

If a DBA-recognizable objective \(\mathbb{W} \subseteq C^\omega \) is half-positional over finite arenas, then it verifies the three previous conditions.
Sufficiency of the conditions

Conditions for half-positionality

\(\mathcal{W} \subseteq \omega \) a DBA-recognizable objective.
- Prefix preorder \(\preceq \) is total.
- Progress-consistency.
- Recognizability by the prefix-classifier \(\mathcal{B} \sim \).

They are also sufficient (over all arenas)!
Sufficiency of the conditions

The main ingredient to prove the sufficiency of the conditions is:

Theorem (Ohlmann 2021)

An objective $\mathbb{W} \subseteq C^\omega$ is half-positional if and only if for every cardinal κ there exists a (\mathbb{W}, κ)-universal well-monotonic graph \mathcal{U}.

(\mathbb{W}, κ)-universal well-monotonic graph

(\mathcal{U}, \leq) edge-labeled graph with a well order such that:

$\mathcal{U} \models \mathbb{W}$: All paths of \mathbb{W} satisfy \mathbb{W}.

Well-monotonic: edges in \mathcal{U} “are closed by the order relation”.

(\mathbb{W}, κ)-universal: If \mathcal{G} is another graph such that all its paths satisfy \mathbb{W} and $|\mathcal{G}| < \kappa$, then it can be embedded in \mathcal{U}.
Sufficiency of the conditions

The main ingredient to prove the sufficiency of the conditions is:

Theorem (Ohlmann 2021)

An objective $\mathbb{W} \subseteq C^\omega$ is half-positional if and only if for every cardinal κ there exists a (\mathbb{W}, κ)-universal well-monotonic graph \mathcal{U}.

The existence of such graphs is a structural witness of positionality.
Sufficiency of the conditions

Proposition

If $\mathbb{W} \subseteq C^\omega$ is a DBA-recognizable objective verifying

- Prefix preorder \preceq is total,
- Progress-consistency,
- Recognizability by the prefix-classifier B_\sim,

then, there is a (\mathbb{W}, κ)-universal well-monotonic graph for every cardinal κ.

Corollary (Sufficiency of the conditions)

If a DBA-recognizable objective $\mathbb{W} \subseteq C^\omega$ verifies the three previous conditions, then it is half-positional.
Main result

Conditions for half-positionality

\(W \subseteq C^\omega \) a DBA-recognizable objective.

- Prefix preorder \(\preceq \) is total.
- Progress-consistency.
- Recognizability by the prefix-classifier \(B_\sim \).

Theorem

A DBA-recognizable objective \(W \subseteq C^\omega \) is half-positional if and only if it verifies the three previous conditions.
Main result

Conditions for half-positionality

\[\mathcal{W} \subseteq \mathcal{C}^\omega \text{ a DBA-recognizable objective.} \]

- Prefix preorder \(\preceq \) is total.
- Progress-consistency.
- Recognizability by the prefix-classifier \(\mathcal{B}_\sim \).

Theorem

A DBA-recognizable objective \(\mathcal{W} \subseteq \mathcal{C}^\omega \) is half-positional if and only if it verifies the three previous conditions.
Corollary (Complexity)

Given a Büchi automaton \mathcal{B}, we can determine in polynomial time whether $\mathcal{L}(\mathcal{B})$ is half-positional.

Corollary (1-to-2 players lift)

Let \mathbb{W} be a DBA-recognizable objective. If \mathbb{W} is positional over finite one-player arenas, then it is half-positional over all arenas (2 players and of any cardinality).
Examples
\[
\mathcal{W} = \text{Büchi}(a) \cup C^* a^2 C^\omega.
\]

Prefix-classifier \(\mathcal{B}_{\sim} \).
Example

\[W = \text{Büchi}(a) \cup C^* a^2 C^\omega. \]

Büchi condition on top of the prefix-classifier \(B_{\sim} \).
Example

$W = \text{Büchi}(a) \cup C^* a^2 C^\omega$.

Büchi condition on top of the prefix-classifier B_\sim.

Positional!
Remark: \(W = \text{Büchi}(a) \cup C^* a^2 C^\omega \) is not bi-positional:

\[
C^\omega \setminus W = (b^*ab)^* b^\omega \quad \text{(Not progress-consistent)}.
\]
Open questions
Open questions

Characterization of positionality for ω-regular languages.
Open questions

Characterization of positionality for ω-regular languages.

Subquestions:

- Characterization of positionality for languages recognized by deterministic co-Büchi automata.
- Union prefix-independent positional ω-regular conditions is positional?
- For ω-regular conditions, positionality over finite arenas implies positionality over arbitrary arenas?
- 1-to-2 players lift for ω-regular conditions.
Open questions

Characterization of positionality for ω-regular languages.

Subquestions:

▶ Characterization of positionality for languages recognized by deterministic co-Büchi automata.

▶ Union prefix-independent positional ω-regular conditions is positional?

▶ For ω-regular conditions, positionality over finite arenas implies positionality over arbitrary arenas?

▶ 1-to-2 players lift for ω-regular conditions.

Thank you!