Dynamics on Games: Simulation-Based Techniques and Applications to Routing

Benjamin Monmege (Aix-Marseille Université, France) Thomas Brihaye Marion Hallet Bruno Quoitin (Mons, Belgium) Gilles Geeraerts (Université libre de Bruxelles, Belgium)

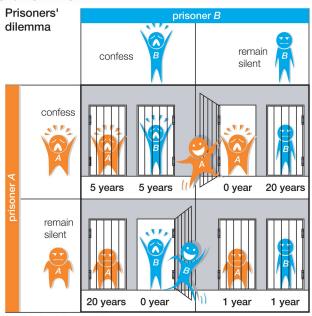
> ANR Delta June 2022

Slides partly borrowed from Thomas Brihaye and Marion Hallet Work published at FSTTCS 2019

Outline

- A brief review of strategic games
 - Nash equilibrium
 - Symmetric two-player games
- Evolutionary game theory
 - Evolutionary Stable Strategy
 - The Replicator Dynamics
 - Other Dynamics
- Games played on graphs
 - Two examples of dynamics
 - Relations that maintain termination
 - More realistic conditions
 - Application to interdomain routing

Prisoner's dilemma



© 2010 Encyclopædia Britannica, Inc.

Prisoner's dilemma

Equivalently (since only the relative order of payoffs matters):

The point of view of strategic games

Rules of the game

- The game is played only once by two players
- The players choose simultaneously their actions (no communication)
- Each player receives his payoff depending of all the chosen actions
- The goal of each player is to maximise his own payoff

The point of view of strategic games

Rules of the game

- The game is played only once by two players
- The players choose simultaneously their actions (no communication)
- Each player receives his payoff depending of all the chosen actions
- The goal of each player is to maximise his own payoff

Hypotheses made in strategic games

- The players are intelligent (i.e. they reason perfectly and quickly)
- The players are rational (i.e. they want to maximise their payoff)
- The players are **selfish** (i.e. they only care for their own payoff)

The point of view of strategic games

Rules of the game

- The game is played only once by two players
- The players choose simultaneously their actions (no communication)
- Each player receives his payoff depending of all the chosen actions
- The goal of each player is to maximise his own payoff

Hypotheses made in strategic games

- The players are **intelligent** (i.e. they reason perfectly and quickly)
- The players are rational (i.e. they want to maximise their payoff)
- The players are **selfish** (i.e. they only care for their own payoff)

Strategic games

Definition

A strategic game G is a triple $(N, (A_i)_{i \in N}, (P_i)_{i \in N})$ where:

- N is the finite and non empty set of players,
- A_i is the non empty set of actions of player i,
- $P_i: A_1 \times \cdots \times A_N \to \mathbb{R}$ is the payoff function of player i.

Nash equilibrium

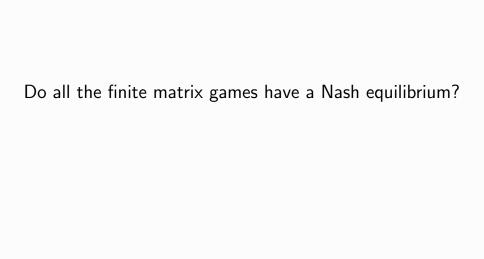
Nash Equilibrium - Definition

Let (N, A_i, P_i) be a strategic game and $a = (a_i)_{i \in N}$ be a strategy profile.

We say that $a = (a_i)_{i \in N}$ is a Nash equilibrium iff

$$\forall i \in N \ \forall b_i \in A_i \quad P_i(b_i, a_{-i}) \leq P_i(a_i, a_{-i})$$

(S,S) is the unique Nash equilibrium



Do all the finite matrix games have a Nash equilibrium?

		L	R
No: matching pennie	es L	(1,-1) (-1,1)	(-1,1)
	R	(-1,1)	(1,-1)

Nash equilibria in mixed strategies

$$\begin{array}{c|cccc} & L & R \\ \hline L & (1,-1) & (-1,1) \\ R & (-1,1) & (1,-1) \\ \end{array}$$

The following profile is a Nash equilibrium in mixed strategies:

$$\sigma_1 = \begin{cases} \mathsf{L} & \text{with proba } \frac{1}{2} \\ \mathsf{R} & \text{with proba } \frac{1}{2} \end{cases} \quad \mathsf{and} \quad \sigma_2 = \begin{cases} \mathsf{L} & \text{with proba } \frac{1}{2} \\ \mathsf{R} & \text{with proba } \frac{1}{2} \end{cases}$$

whose expected payoff is 0.

Nash equilibria in mixed strategies

$$\begin{array}{c|cccc} & L & R \\ \hline L & (1,-1) & (-1,1) \\ R & (-1,1) & (1,-1) \\ \end{array}$$

The following profile is a Nash equilibrium in mixed strategies:

$$\sigma_1 = \begin{cases} \mathsf{L} & \text{ with proba } \frac{1}{2} \\ \mathsf{R} & \text{ with proba } \frac{1}{2} \end{cases} \quad \mathsf{and} \quad \sigma_2 = \begin{cases} \mathsf{L} & \text{ with proba } \frac{1}{2} \\ \mathsf{R} & \text{ with proba } \frac{1}{2} \end{cases}$$

whose expected payoff is 0.

Nash Theorem [1950]

Every finite game admits mixed Nash equilibria.

Symmetric games

$$\begin{array}{c|ccc} & X & Y \\ \hline X & (\alpha, \alpha) & (\gamma, \delta) \\ Y & (\delta, \gamma) & (\beta, \beta) \end{array}$$

Symmetric games

A symmetric game is a game $(N, (A_i)_{i \in N}, (P_i)_{i \in N})$ where:

- $A_1 = A_2 = \cdots = A_N$
- $\forall (a_1, \ldots, a_N) \in A_1 \times \cdots \times A_N$, $\forall \pi$ permutations, $\forall k$, we have that $P_{\pi(k)}(a_1, \ldots, a_N) = P_k(a_{\pi(1)}, \ldots, a_{\pi(k)})$

Symmetric games

$$\begin{array}{c|ccc} & X & Y \\ \hline X & (\alpha, \alpha) & (\gamma, \delta) \\ Y & (\delta, \gamma) & (\beta, \beta) \end{array}$$

Symmetric games

A symmetric game is a game $(N, (A_i)_{i \in N}, (P_i)_{i \in N})$ where:

- $A_1 = A_2 = \cdots = A_N$
- $\forall (a_1,\ldots,a_N) \in A_1 \times \cdots \times A_N$, $\forall \pi$ permutations, $\forall k$, we have that $P_{\pi(k)}(a_1,\ldots,a_N) = P_k(a_{\pi(1)},\ldots,a_{\pi(k)})$
- ullet Special case of 2-players: $orall (a_1,a_2)\in A_1 imes A_2,\ P_2(a_1,a_2)=P_1(a_2,a_1)$

Symmetric games

$$\begin{array}{c|ccc} & X & Y \\ \hline X & (\alpha, \alpha) & (\gamma, \delta) \\ Y & (\delta, \gamma) & (\beta, \beta) \end{array}$$

Symmetric games

A symmetric game is a game $(N, (A_i)_{i \in N}, (P_i)_{i \in N})$ where:

- $A_1 = A_2 = \cdots = A_N$
- $\forall (a_1,\ldots,a_N) \in A_1 \times \cdots \times A_N$, $\forall \pi$ permutations, $\forall k$, we have that $P_{\pi(k)}(a_1,\ldots,a_N) = P_k(a_{\pi(1)},\ldots,a_{\pi(k)})$
- Special case of 2-players: $\forall (a_1, a_2) \in A_1 \times A_2, \ P_2(a_1, a_2) = P_1(a_2, a_1)$

Symmetric Nash Equilibrium

A Nash equilibrium $(\sigma_1, \ldots, \sigma_N)$ is said symmetric when $\sigma_1 = \cdots = \sigma_N$.

Example 1: 2×2 games - The 4 categories

- Cat 1: $\alpha < 0$ et $\beta > 0$. NE={(Y, Y)}
- Cat 2: $\alpha, \beta > 0$. NE= $\{(X, X), (Y, Y), (\sigma, \sigma)\}$ with $\sigma = \left(\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta}\right)$
- Cat 3: $\alpha, \beta < 0$. NE= $\{(X, Y), (Y, X), (\sigma, \sigma)\}$ with $\sigma = \left(\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta}\right)$
- Cat 4: $\alpha > 0$ et $\beta < 0$. NE= $\{(X, X)\}$

Example 2: The generalised Rock-Scissors-Paper Games

	R	S	Р
R	(1,1)	(2+a,0)	(0, 2 + a)
S	(0,2+a)	(1,1)	(2 + a, 0)
Р	(2 + a, 0)	(0, 2 + a)	(1, 1)

(The original RPS game is obtained when a = 0)

Example 2: The generalised Rock-Scissors-Paper Games

	R	S	Р
R	(1,1)	(2+a,0)	(0, 2 + a)
S	(0, 2 + a)	(1, 1)	(2+a,0)
Р	(2 + a, 0)	(0, 2 + a)	(1, 1)

(The original RPS game is obtained when a = 0)

A unique Nash equilibrium (σ, σ, σ) , where $\sigma = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.

Theorem [Cheng et al, 2004]

Every 2-strategy symmetric game (i.e. $|A_i|=2$) admits a (pure) Nash equilibrium. But it might not be symmetric...

Theorem [Cheng et al, 2004]

Every 2-strategy symmetric game (i.e. $|A_i|=2$) admits a (pure) Nash equilibrium. But it might not be symmetric...

• no longer true if not "2-strategy": RPS...

Theorem [Cheng et al, 2004]

Every 2-strategy symmetric game (i.e. $|A_i|=2$) admits a (pure) Nash equilibrium. But it might not be symmetric...

- no longer true if not "2-strategy": RPS...
- no longer true if not "symmetric": Matching pennies

$$\begin{array}{c|cccc} & L & R \\ \hline L & (1,-1) & (-1,1) \\ R & (-1,1) & (1,-1) \end{array}$$

Theorem [Cheng et al, 2004]

Every 2-strategy symmetric game (i.e. $|A_i| = 2$) admits a (pure) Nash equilibrium. But it might not be symmetric...

- no longer true if not "2-strategy": RPS...
- no longer true if not "symmetric": Matching pennies

$$\begin{array}{c|cccc} & L & R \\ \hline L & (1,-1) & (-1,1) \\ R & (-1,1) & (1,-1) \end{array}$$

not necessarily symmetric: anti-coordination game

$$\begin{array}{c|cccc} & X & Y \\ \hline X & (0,0) & (1,1) \\ Y & (1,1) & (0,0) \end{array}$$

Outline

- A brief review of strategic games
 - Nash equilibrium
 - Symmetric two-player games
- Evolutionary game theory
 - Evolutionary Stable Strategy
 - The Replicator Dynamics
 - Other Dynamics
- Games played on graphs
 - Two examples of dynamics
 - Relations that maintain termination
 - More realistic conditions
 - Application to interdomain routing

The point of view of evolutionary games

	С	S
С	(3,3)	(1,4)
S	(4,1)	(2, 2)

Rules of the game

- We have a **large** population of individuals
- Individuals are repeatedly drawn at random to play the above game
- The payoffs are supposed to represent the gain in biological fitness or reproductive value

The point of view of evolutionary games

Rules of the game

- We have a large population of individuals
- Individuals are repeatedly drawn at random to play the above game
- The payoffs are supposed to represent the gain in biological fitness or reproductive value

Hypotheses made in evolutionary games

- Each individual is **genetically programmed** to play either C or S
- The individuals are no more intelligent, nor rational, nor selfish

Can an existing population resist to the invasion of a mutant?

The point of view of evolutionary games

The strategy ${\sf S}$ is evolutionary stable, facing an invasion of the mutant strategy ${\sf C}.$

Rules of the game

- We have a **large** population of individuals
- Individuals are repeatedly drawn at random to play the above game
- The payoffs are supposed to represent the gain in biological fitness or reproductive value

Hypotheses made in evolutionary games

- Each individual is genetically programmed to play either C or S
- The individuals are no more intelligent, nor rational, nor selfish

Can an existing population resist to the invasion of a mutant?

Evolutionary Stable Strategy: robustness to mutations

Evolutionary Stable Strategy

We say that σ is an **evolutionary stable strategy (ESS)** if

- (σ, σ) is a Nash equilibrium
- $\forall \sigma'(\neq \sigma)$ $P(\sigma', \sigma) = P(\sigma, \sigma) \Longrightarrow P(\sigma', \sigma') < P(\sigma', \sigma)$

Thus if (σ, σ) is a **strict** Nash equilibrium, then σ is an ESS.

- (A,A), (B,B) and (C,C) are Nash equilibria.
- A is not an ESS.
- B and C are ESS.

Evolutionary Stable Strategy - Alternative definition

- ullet Imagine a population composed of a unique species σ
- ullet A small proportion ϵ of the population mutes to a new species σ'
- The new population is thus $\epsilon \sigma' + (1 \epsilon)\sigma$

Proposition

A strategy σ is an **ESS** iff $\forall \sigma' (\neq \sigma) \exists \epsilon_0 \in (0,1) \forall \epsilon \in (0,\epsilon_0)$

$$P(\sigma, \epsilon \sigma' + (1 - \epsilon)\sigma) > P(\sigma', \epsilon \sigma' + (1 - \epsilon)\sigma)$$

Evolutionary Stable Strategy - Alternative definition

- ullet Imagine a population composed of a unique species σ
- ullet A small proportion ϵ of the population mutes to a new species σ'
- The new population is thus $\epsilon \sigma' + (1 \epsilon)\sigma$

Proposition

A strategy σ is an **ESS** iff $\forall \sigma' (\neq \sigma) \exists \epsilon_0 \in (0,1) \forall \epsilon \in (0,\epsilon_0)$

$$P(\sigma, \epsilon \sigma' + (1 - \epsilon)\sigma) > P(\sigma', \epsilon \sigma' + (1 - \epsilon)\sigma)$$

Static concept: it suffices to study the one-shot game

Evolutionary Stable Strategy - 2×2 games

The evolution of a population - intuitively

Population composed of several species

Variation of popu. the species = Popu. of the species \times Advantage of the species

Advantage of the species = Fitness of the species - Average fitness of all species

The evolution of a population - more formally (1)

- We consider a population where individuals are divided into n species.
 Individuals of species i are programmed to play the pure strategy ai.
- We denote by $p_i(t)$ the number of individuals of species i at time t.
- The total population at time t is given by

$$p(t) = p_1(t) + \cdots + p_n(t)$$

• The **population state** at time t is given by

$$\sigma(t) = (\sigma_1(t), \dots, \sigma_n(t))$$
 where $\sigma_i(t) = \frac{p_i(t)}{p(t)}$

The evolution of a population - more formally (2)

The evolution of the state of the population is given by:

The replicator dynamics (RD)

$$\frac{\mathsf{d}}{\mathsf{d}t}\sigma_i(t) = (P(a_i, \sigma(t)) - P(\sigma(t), \sigma(t))) \cdot \sigma_i(t)$$

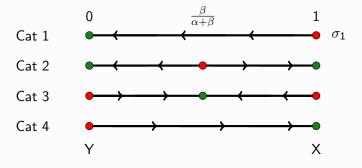
Theorem

Given any initial condition $\sigma(0) \in \Delta(A)$, the above system of differential equations always admits a unique solution.

The replicator dynamics - 2×2 games

$$\Delta(A) = \{(\sigma_1, \sigma_2) \in [0, 1]^2 \mid \sigma_1 + \sigma_2 = 1\} \simeq [0, 1]$$
, where σ_1 is the proportion of X

The solutions $(\sigma_1(t), 1 - \sigma_1(t))$ of the (RD) behave as follows:



Results

There are several results relating various notions of "static" stability:

- Nash equilibrium,
- Evolutionary Stable Strategy,
- Neutrally Stable Strategy...

Results

There are several results relating various notions of "static" stability:

- Nash equilibrium,
- Evolutionary Stable Strategy,
- Neutrally Stable Strategy...

with various notions of "dynamic" stability:

- stationary points,
- Lyapunov stable points,
- asymptotically stable point ...

Results

There are several results relating various notions of "static" stability:

- Nash equilibrium,
- Evolutionary Stable Strategy,
- Neutrally Stable Strategy...

with various notions of "dynamic" stability:

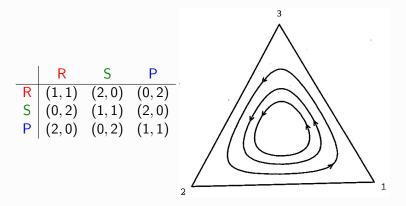
- stationary points,
- Lyapunov stable points,
- asymptotically stable point ...

Theorems

- If $\sigma \in \Delta$ is Lyapunov stable, then σ is a NE.
- If $\sigma \in \Delta$ is an ESS, then σ is asymptotically stable.

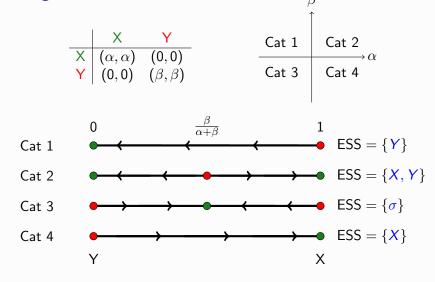
Rock-Scissors-Paper

 $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is Lyapunov stable but not asymptotically stable.



The picture is taken from Evolutionnary game theory by J.W. Weibull.

2×2 games - RD Vs ESS



- Asymptotically stable
- Stationary

An alternative dynamics

Replicator dynamics

Variation of popu. the species = Popu. of the species \times Advantage of the species Advantage of the species = Fitness of the species = Average fitness of all species

An alternative dynamics

Replicator dynamics

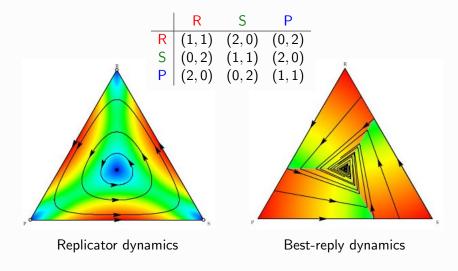
Variation of popu. the species = Popu. of the species \times Advantage of the species Advantage of the species = Fitness of the species - Average fitness of all species

Alternative hypothesis: offspring react **smartly** to the mixture of past strategies played by the opponents, by playing a **best-reply strategy** to this mixture

Best-reply dynamics

 $\mbox{Variation of Strategy Mixture} = \mbox{Best-Reply Strategy} - \mbox{Current Strategy Mixture}$

Replicator vs Best-reply



Pictures taken from Evolutionnary game theory by W. H. Sandholm

Other dynamics

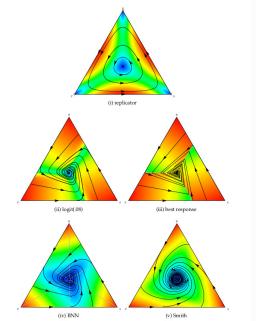


Figure 1: Five basic deterministic dynamics in standard Rock-Paper-Scissors. Colors represent speeds: red

Static approach

Dynamic approach

Equilibria Stable Points

Picture taken from Evolutionnary game theory by W. H. Sandholm

Static approach

Dynamic approach

Equilibria

Stable Points

If we discover a new game

• Find immediately a good strategy is concretely impossible

Static approach

Dynamic approach

Equilibria

Stable Points

If we discover a new game

- Find immediately a good strategy is concretely impossible
- If we play several times, we will improve our strategy

Static approach

Dynamic approach

Equilibria

Stable Points

If we discover a new game

- Find immediately a good strategy is concretely impossible
- If we play several times, we will improve our strategy
- With enough different plays, will we eventually stabilize?

Static approach

Dynamic approach

Equilibria

Stable Points

If we discover a new game

- Find immediately a good strategy is concretely impossible
- If we play several times, we will improve our strategy
- With enough different plays, will we eventually stabilize?
- If so, will this strategy be a good strategy?

Static approach

Dynamic approach

Equilibria

Stable Points

If we discover a new game

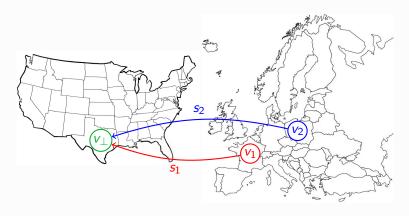
- Find immediately a good strategy is concretely impossible
- If we play several times, we will improve our strategy
- With enough different plays, will we eventually stabilize?
- If so, will this strategy be a good strategy?

Our Goal

- Apply this idea of improvement/mutation on games played on graphs
- Prove stabilisation via reduction/minor of games
- Show some links with interdomain routing

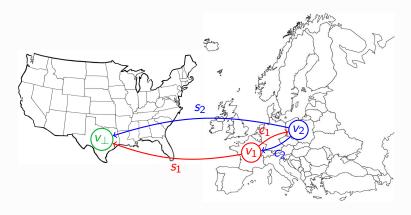
Interdomain routing problem

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .



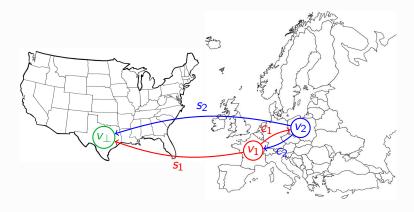
Interdomain routing problem

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .



Interdomain routing problem

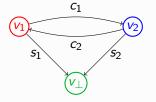
Two service providers: v_1 and v_2 want to route packets to v_{\perp} .



 v_1 prefers the route $v_1v_2v_\perp$ to the route v_1v_\perp (preferred to $(v_1v_2)^\omega$) v_2 prefers the route $v_2v_1v_\perp$ to the route v_2v_\perp (preferred to $(v_2v_1)^\omega$)

Interdomain routing problem as a game played on a graph

Two service providers: v_1 and v_2 want to route packets to v_{\perp} .



 v_1 prefers the route $v_1v_2v_\perp$ to the route v_1v_\perp (preferred to $(v_1v_2)^\omega$) v_2 prefers the route $v_2v_1v_\perp$ to the route v_2v_\perp (preferred to $(v_2v_1)^\omega$)

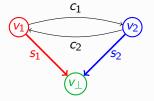
$$v_1v_{\perp} \prec_1 v_1v_2v_{\perp}$$
 and $v_2v_{\perp} \prec_2 v_2v_1v_{\perp}$

Games played on a graph – The strategic game approach

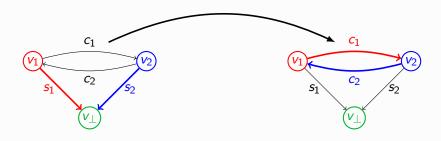
2 Nash equilibria: (c_1, s_2) and (s_1, c_2)

Static vision of the game: players are perfectly informed and supposed to be intelligent, rational and selfish

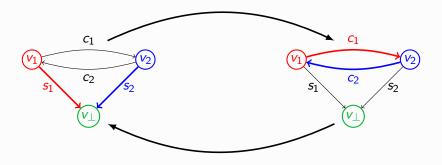
Games played on a graph – The evolutionary approach



Games played on a graph – The evolutionary approach

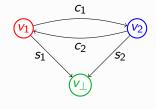


Games played on a graph – The evolutionary approach

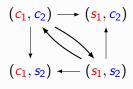


Asynchronous nature of the network could block the packets in an undesirable cycle...

Interdomain routing problem - open problem



The game **G**



The graph of the dynamics: $\mathbf{G}\langle \rightarrow \rangle$

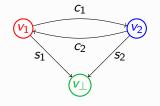
Identify necessary and sufficient conditions on ${\bf G}$ such that ${\bf G}\langle {m o} \rangle$ has no cycle

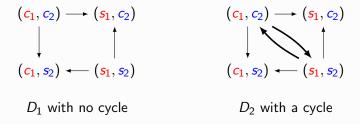
Ideally, the conditions should be algorithmically simple, locally testable...

Numerous interesting partial solutions proposed in the literature

Daggitt, Gurney, Griffin. Asynchronous convergence of policy-rich distributed Bellman-Ford routing protocols. 2018

Games played on a graph – The evolutionary approach Different dynamics





Outline

- A brief review of strategic games
 - Nash equilibrium
 - Symmetric two-player games
- 2 Evolutionary game theory
 - Evolutionary Stable Strategy
 - The Replicator Dynamics
 - Other Dynamics
- Games played on graphs
 - Two examples of dynamics
 - Relations that maintain termination
 - More realistic conditions
 - Application to interdomain routing

Positional 1-step dynamics $\stackrel{\text{\tiny P1}}{\rightarrow}$

$$profile_1 \xrightarrow{P_1} profile_2$$

if:

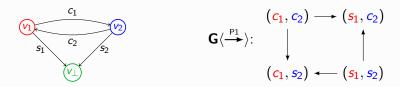
- a single player changes at a single node
- this player improves his own outcome

Positional 1-step dynamics $\stackrel{\text{\tiny P1}}{\rightarrow}$

$$profile_1 \xrightarrow{P_1} profile_2$$

if:

- a single player changes at a single node
- this player improves his own outcome



Positional Concurrent Dynamics $\stackrel{\text{PC}}{\rightarrow}$

$$\mathsf{profile}_1 \xrightarrow{\mathsf{PC}} \mathsf{profile}_2$$

if

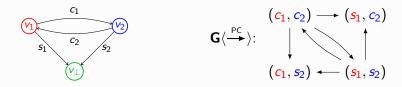
- one or several players change at a single node
- all players that change intend to improve their outcome
- but synchronous changes may result in worst outcomes...

Positional Concurrent Dynamics - PC

$$\mathsf{profile}_1 \xrightarrow{\mathsf{PC}} \mathsf{profile}_2$$

if

- one or several players change at a single node
- all players that change intend to improve their outcome
- but synchronous changes may result in worst outcomes...

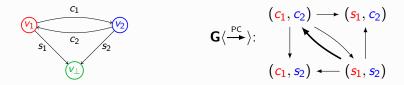


Positional Concurrent Dynamics - PC

$$profile_1 \xrightarrow{PC} profile_2$$

if

- one or several players change at a single node
- all players that change intend to improve their outcome
- but synchronous changes may result in worst outcomes...



both players **intend** to reach their best outcome $(v_1v_\perp \prec_1 v_1v_2v_\perp \text{ and } v_2v_\perp \prec_2 v_2v_1v_\perp)$, even if they do not manage to do it (as the reached outcome is $(v_1v_2)^\omega$ and $(v_2v_1)^\omega$)

Questions

What condition should **G** satisfy to ensure that

 $\mathbf{G}\langle \rightarrow \rangle$ has no cycles, i.e. dynamics \rightarrow terminates on \mathbf{G} ?

Questions

What condition should **G** satisfy to ensure that

 $\mathbf{G}\langle \rightarrow \rangle$ has no cycles, i.e. dynamics \rightarrow terminates on \mathbf{G} ?

What relations should \rightarrow_1 and \rightarrow_2 satisfy to ensure that

 $\mathbf{G}\langle \mathbf{\rightarrow}_1 \rangle$ has no cycles if and only if $\mathbf{G}\langle \mathbf{\rightarrow}_2 \rangle$ has no cycles?

Questions

What condition should **G** satisfy to ensure that

 $\mathbf{G}\langle \rightarrow \rangle$ has no cycles, i.e. dynamics \rightarrow terminates on \mathbf{G} ?

What relations should \rightarrow_1 and \rightarrow_2 satisfy to ensure that

 $\mathbf{G}\langle \mathbf{\rightarrow}_1 \rangle$ has no cycles if and only if $\mathbf{G}\langle \mathbf{\rightarrow}_2 \rangle$ has no cycles?

What should G_1 and G_2 have in common to ensure that

Simulation relation on dynamics graphs

G simulates G' ($G' \subseteq G$) if all that G' can do, G can do it too.

Simulation relation on dynamics graphs

G simulates G' ($G' \subseteq G$) if all that G' can do, G can do it too.

$$\begin{array}{c} \forall \\ \mathsf{profile}_1' & \longrightarrow \\ & & \\$$

Simulation relation on dynamics graphs

G simulates G' ($G' \sqsubseteq G$) if all that G' can do, G can do it too.

$$\forall \mathsf{profile}_1' \longrightarrow \mathsf{profile}_2'$$

$$\Box \qquad \Box \qquad \Box \qquad \Box$$

$$\forall \mathsf{profile}_1 \longrightarrow \mathsf{profile}_2$$

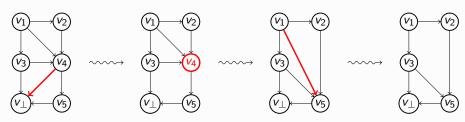
Folklore

If $G_1\langle \rightarrow_1 \rangle$ simulates $G_2\langle \rightarrow_2 \rangle$ and the dynamics \rightarrow_1 terminates on G_1 , then the dynamics \rightarrow_2 terminates on G_2 .

Relation between games

 \mathbf{G}' is a minor of \mathbf{G} if it is obtained by a succession of operations:

- deletion of an edge (and all the corresponding outcomes);
- deletion of an isolated node:
- deletion of a node v with a single edge $v \to v'$ and no predecessor $u \to v$ such that $u \to v'$.



Relation between simulation and minor

Theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{P1}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{P1}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{P1}}{\longrightarrow}$ terminates for \mathbf{G} , it terminates for \mathbf{G}' too.

Relation between simulation and minor

Theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{P}_1}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{P}_1}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{P}_1}{\longrightarrow}$ terminates for \mathbf{G} , it terminates for \mathbf{G}' too.

Theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G} , it terminates for \mathbf{G}' too.

Remark: $\mathbf{G}\langle \stackrel{\mathsf{P1}}{\longrightarrow} \rangle \sqsubseteq \mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$

More realistic conditions

Adding fairness

- Termination might be too strong to ask in interdomain routing...
- Every router that wants to change its decision will have the opportunity to do it in the future...
- Study of fair termination

More realistic conditions

Adding fairness

- Termination might be too strong to ask in interdomain routing...
- Every router that wants to change its decision will have the opportunity to do it in the future...
- Study of fair termination

More realistic dynamics

Consider best reply variants $\xrightarrow{bP1}$ and \xrightarrow{bPC} of the two dynamics, where each player that modifies its strategy changes in the best possible way

Previous theorem

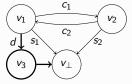
If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G}' too.

Becomes false for best reply dynamics → and →: the best reply dynamics could terminate in G but not in the minor G'

Previous theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G}' too.

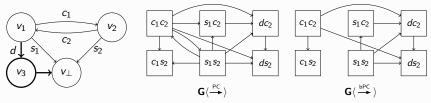
• Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in **G** but not in the minor **G**'



Previous theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \overset{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \overset{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\overset{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G} , it terminates for \mathbf{G}' too.

• Becomes false for best reply dynamics $\xrightarrow{bP1}$ and \xrightarrow{bPC} : the best reply dynamics could terminate in **G** but not in the minor **G**'



Previous theorem

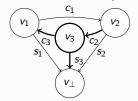
If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G}' too.

- Becomes false for best reply dynamics → and →: the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not terminate) but not for G'

Previous theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G} , it terminates for \mathbf{G}' too.

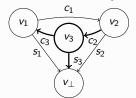
- Becomes false for best reply dynamics → and →: the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not terminate) but not for G'

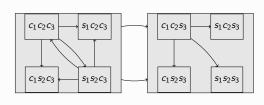


Previous theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G}' too.

- Becomes false for best reply dynamics → and → : the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not terminate) but not for G'





Previous theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G}' too.

- Becomes false for best reply dynamics → and →: the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not terminate) but not for G'
- The reciprocal does not hold...

Previous theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G}' too.

- Becomes false for best reply dynamics → and →: the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not terminate) but not for G'
- The reciprocal does not hold...

Theorem

If **G**' is a *dominant minor* of **G**, then $\stackrel{\mathsf{bPC}}{\longrightarrow} / \stackrel{\mathsf{bP1}}{\longrightarrow}$ fairly terminates for **G** if and only if it fairly terminates for **G**'.

Previous theorem

If \mathbf{G}' is a minor of \mathbf{G} , then $\mathbf{G}\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$ simulates $\mathbf{G}'\langle \stackrel{\mathsf{PC}}{\longrightarrow} \rangle$. In particular, if $\stackrel{\mathsf{PC}}{\longrightarrow}$ terminates for \mathbf{G}' too.

- Becomes false for best reply dynamics → and →: the best reply dynamics could terminate in G but not in the minor G'
- Does not apply to fair termination: the dynamics could fairly terminate for G (and not terminate) but not for G'
- The reciprocal does not hold...

Theorem

If \mathbf{G}' is a *dominant minor* of \mathbf{G} , then $\stackrel{\mathsf{bPC}}{\longrightarrow} / \stackrel{\mathsf{bP1}}{\longrightarrow}$ fairly terminates for \mathbf{G} if and only if it fairly terminates for \mathbf{G}' .

• Use of simulations that are partially invertible...

Interdomain routing

• Particular case of game with one target for all players (reachability game) and players owning a single node (router)

Theorem [Sami, Shapira, Zohar, 2009]

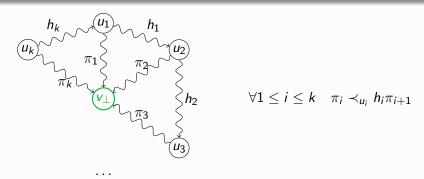
If **G** is a one-target game for which $\xrightarrow{\text{bPC}}$ fairly terminates, then it has exactly one *equilibrium*.

Interdomain routing

 Particular case of game with one target for all players (reachability game) and players owning a single node (router)

Theorem [Griffin, Shepherd, Wilfong, 2002]

There exists a pattern, called *dispute wheel* such that if **G** is a one-target game that has no dispute wheels, then $\xrightarrow{\text{bPC}}$ fairly terminates.



Reciprocal?

Theorem

There exists a stronger pattern, called *strong dispute wheel*, such that if \xrightarrow{PC} terminates for **G**, then **G** has no strong dispute wheel.

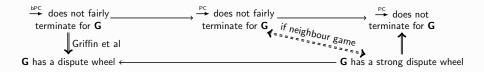
Reciprocal?

Theorem

There exists a stronger pattern, called *strong dispute wheel*, such that if \xrightarrow{PC} terminates for **G**, then **G** has no strong dispute wheel.

Theorem

If **G** satisfies a locality condition on the preferences, then $\stackrel{PC}{\longrightarrow}$ fairly terminates for **G** if and only if **G** has no strong dispute wheel.



Reciprocal?

Theorem

There exists a stronger pattern, called *strong dispute wheel*, such that if

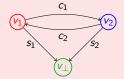
→ terminates for **G**, then **G** has no strong dispute wheel.

Theorem

If **G** satisfies a locality condition on the preferences, then \xrightarrow{PC} fairly terminates for **G** if and only if **G** has no strong dispute wheel.

Theorem

Finding a strong dispute wheel in $\bf G$ can be tested by searching whether $\bf G$ contains the following game as a minor:



Summary

- Looking for equilibria in dynamics of n-player games
- Different possible dynamics
- Conditions for (fair) termination
- Use of game minors and graph simulations
- In the article, non-positional strategies are also considered

Summary

- Looking for equilibria in dynamics of n-player games
- Different possible dynamics
- Conditions for (fair) termination
- Use of game minors and graph simulations
- In the article, non-positional strategies are also considered

Perspectives

- Still open to find a forbidden pattern/minor for fair termination of
 - $\xrightarrow{\text{bPC}}$ in one-target games
- Consider games with imperfect information: model of malicious router
- A better model of asynchronicity?
- Model fairness using probabilities?

Summary

- Looking for equilibria in dynamics of n-player games
- Different possible dynamics
- Conditions for (fair) termination
- Use of game minors and graph simulations
- In the article, non-positional strategies are also considered

Perspectives

- Still open to find a forbidden pattern/minor for fair termination of
 → in one-target games
- Consider games with imperfect information: model of malicious router
- A better model of asynchronicity?
- Model fairness using probabilities?

Thank you! Questions?