REACTIVE SYNTHESIS OVER INFINITE DATA DOMAINS

EMMANUEL FILIOT (ULB)

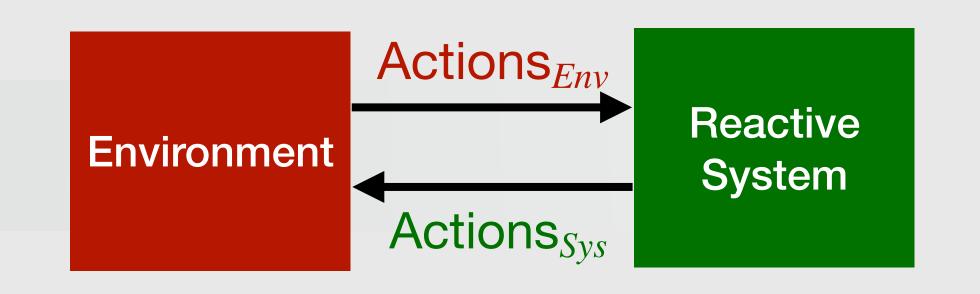
Based on joint works with

LEO EXIBARD

AYRAT KHALIMOV

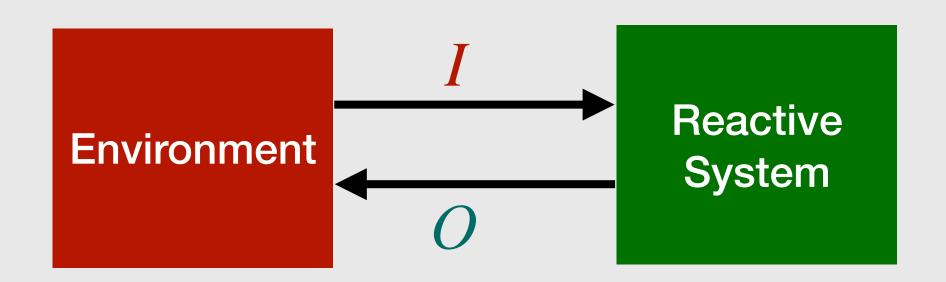
PIERRE-ALAIN REYNIER

Intro



- Reactive synthesis (RS): automatically construct a reactive system from a specification of correct semantical behaviours $S \subseteq (Actions_{Env}, Actions_{Sys})^{\omega}$
- Formal methods for RS: logic/automata/games, focus on control, ignore data
- Objective: extend formal methods for RS with data
- In this talk: $S \subseteq [(Actions_{Env} \times \mathcal{D}) . (Actions_{Sys} \times \mathcal{D})]^{\omega}$
- Questions:
 - How to model specifications? How to model reactive systems?
 - What's decidable? For which data domains?

(Data-free) Reactive Synthesis Problem



$$i_1.o_1.i_2.o_2... \in (I.O)^{\omega}$$

Synthesis Problem

Input: a specification language $S \subseteq (IO)^{\omega}$

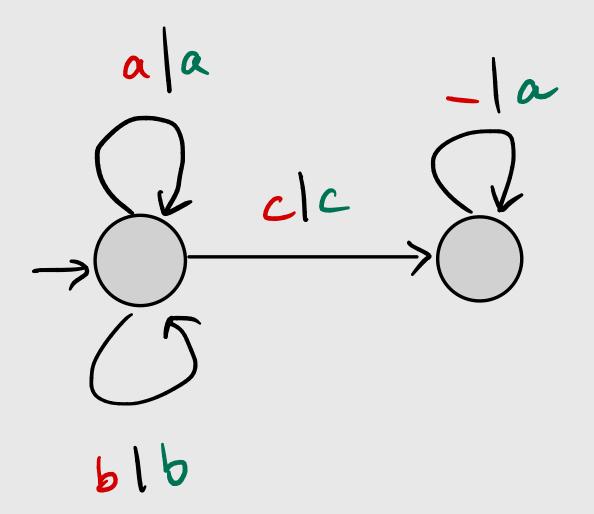
Output: a Mealy machine M such that $L(M) \subseteq S$

- $I = O = \{a, b, c\}$
- Spec: "relay input up to first c, or forever if no c"

$$S = (aa + bb)^{\omega} + (aa + bb)^*cc(IO)^{\omega}$$

- $I = O = \{a, b, c\}$
- Spec: "relay input up to first c, or forever if no c"

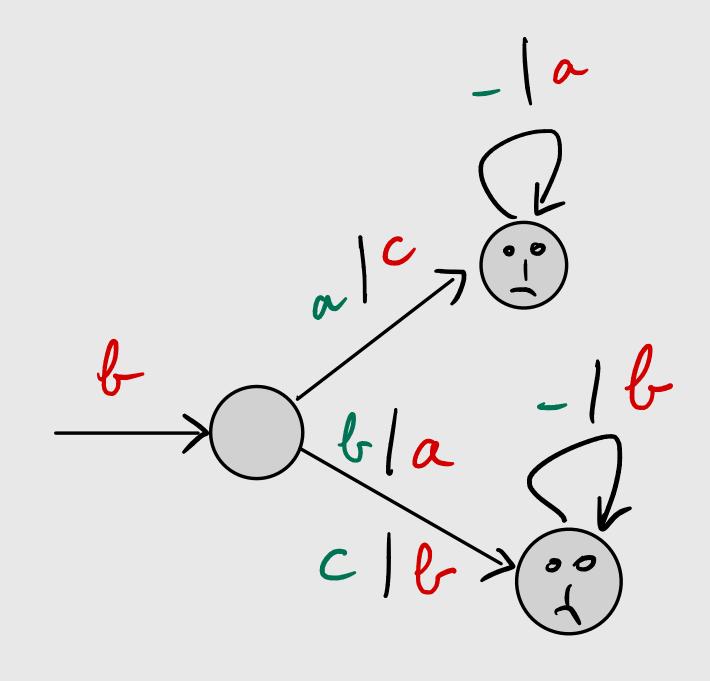
$$S = (aa + bb)^{\omega} + (aa + bb)^*cc(IO)^{\omega}$$



- $I = O = \{a, b, c\}$
- Spec: $S = (aa + ba)^{\omega} + (aa + bb)^*cc(IO)^{\omega}$
- Unrealizable!

- $I = O = \{a, b, c\}$
- Spec: $S = (aa + ba)^{\omega} + (aa + bb)^*cc(IO)^{\omega}$
- Unrealizable!

Environment can
realize S with
a Moore machine

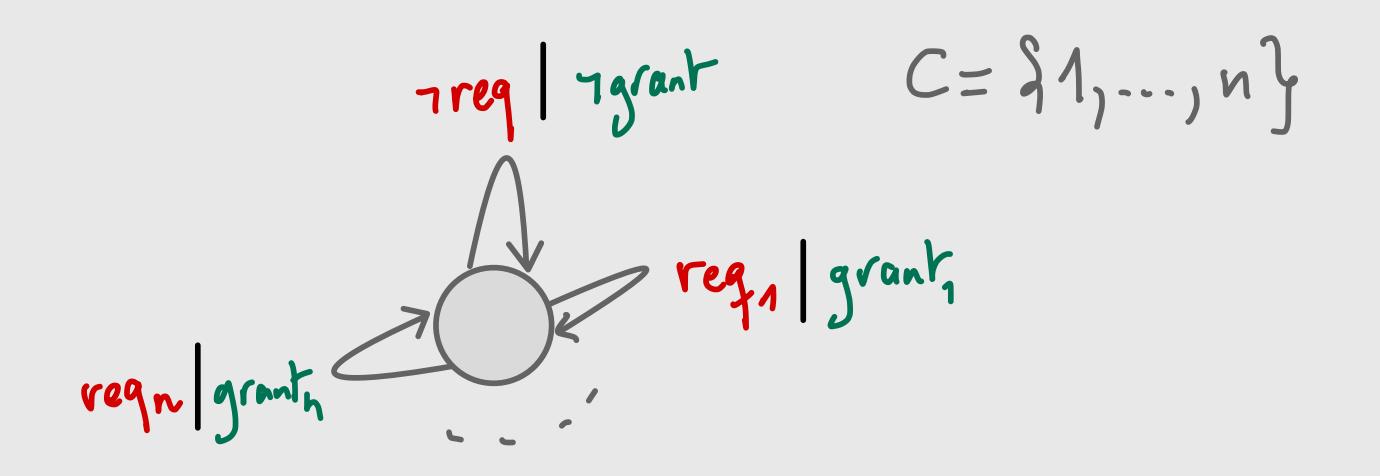


Example 3: request / grant

- $C \subseteq \mathbb{N}$ finite
- $I = \{req_i \mid i \in C\} \cup \{\neg req\}$
- $O = \{grt_i \mid i \in C\} \cup \{\neg grt\}$
- Spec: $\bigwedge_{i \in C} G(req_i \to F(grt_i))$

Example 3: request / grant

- $C \subseteq \mathbb{N}$ finite
- $I = \{req_i \mid i \in C\} \cup \{\neg req\}$
- $O = \{grt_i \mid i \in C\} \cup \{\neg grt\}$
- Spec: $\bigwedge_{i \in C} G(req_i \to F(grt_i))$

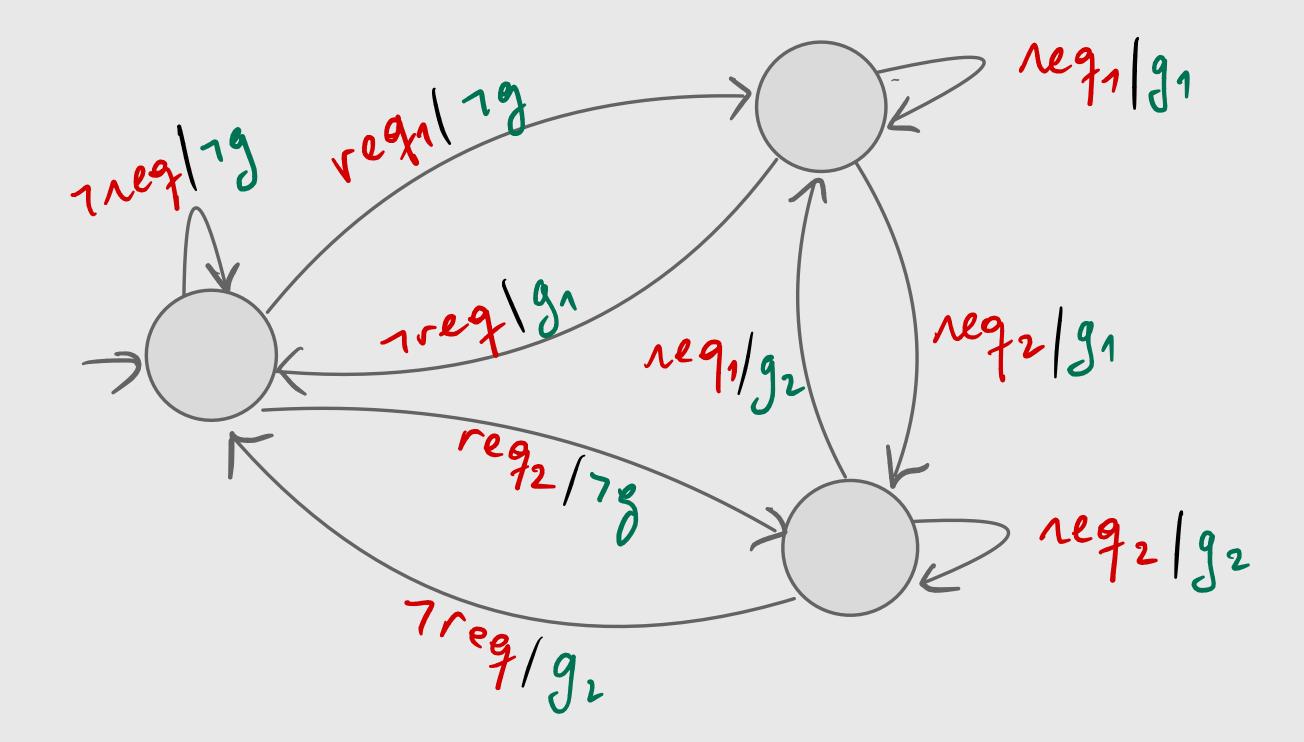


Example 4: request/grant with delay

- Any request must be granted after at least *d* input steps
- For d = 1 and |C| = 2:

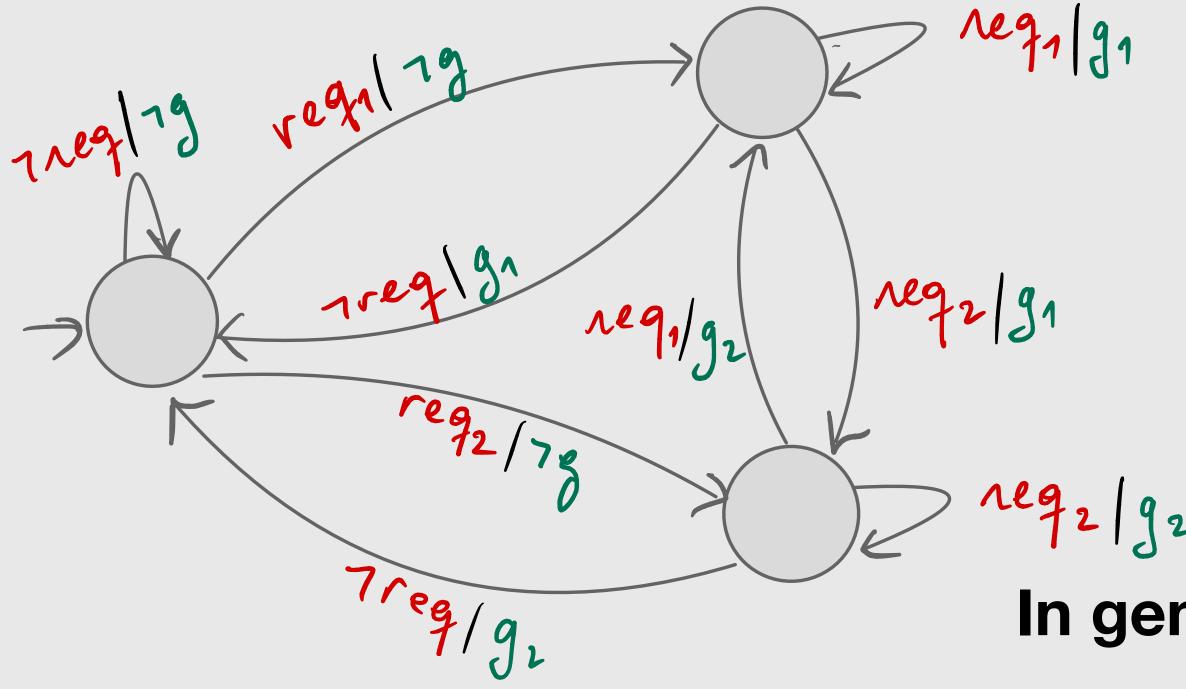
Example 4: request/grant with delay

- Any request must be granted after at least *d* input steps
- For d = 1 and |C| = 2: $C = \{1, 2\}$



Example 4: request/grant with delay

- Any request must be granted after at least *d* input steps
- For d = 1 and |C| = 2:



In general: machine with $O(|C|^d)$ states

Important results in reactive synthesis

• Classical approach: $logic \rightarrow automata \rightarrow deterministic$ automata $\rightarrow games$

• Regular spec: LTL, MSO, non-det Büchi automata, universal coBüchi automata, det parity automata, good-for-games automata, ...

stine-c

Important results in reactive synthesis

- Classical approach: $logic \rightarrow automata \rightarrow deterministic$ automata $\rightarrow games$
- Regular spec: LTL, MSO, non-det Büchi automata, universal coBüchi automata, det parity automata, good-for-games automata, ...

• Game theory on graphs

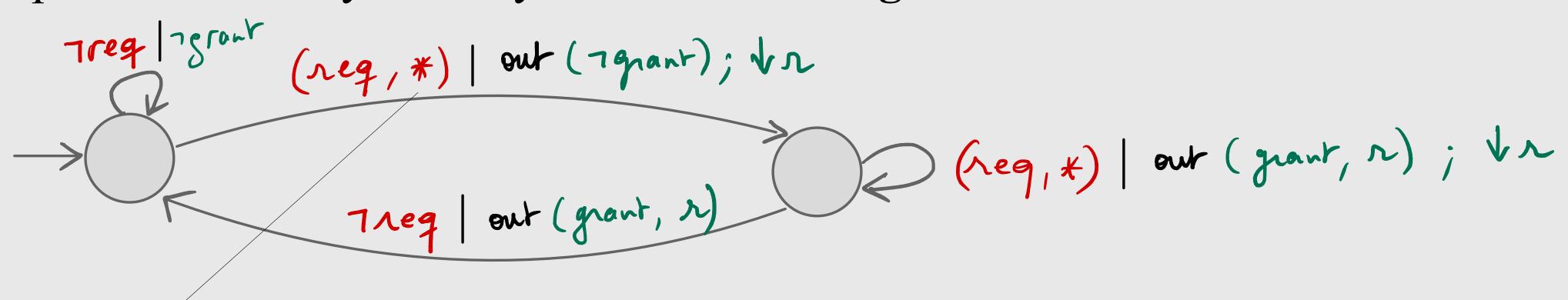
- Tools: Strix, LTLSynth, AcaciaBonzai, ...
- Yearly synthesis competition since 2014

Delayed request/grant example revisited

- Spec: "Any request must be granted after at least d input steps"
- $C \subseteq \mathbb{N}$ $C = \mathbb{N}$
- $I = \{(req, i) \mid i \in C\} \cup \{\neg req\}$
- $O = \{(grt, i) \mid i \in C\} \cup \{\neg grt\}$

Delayed request/grant example revisited

- Spec: "Any request must be granted after at least d input steps"
- $C \subseteq \mathbb{N}$ $C = \mathbb{N}$
- $I = \{(req, i) \mid i \in C\} \cup \{\neg req\}$
- $O = \{(grt, i) \mid i \in C\} \cup \{\neg grt\}$
- Spec realizable by a Mealy machine with registers. For d=1:



Delayed request/grant example revisited

- Spec: "Any request must be granted after at least d input steps"
- $C \subseteq \mathbb{N}$ $C = \mathbb{N}$
- $I = \{(req, i) \mid i \in C\} \cup \{\neg req\}$
- $O = \{(grt, i) \mid i \in C\} \cup \{\neg grt\}$
- Spec realizable by a Mealy machine with registers. For d=1:

- \rightarrow in general: Mealy machine with O(d) states and O(d) registers
- \rightarrow Priorities between processes: data domain (\mathbb{N}, \leq)

Synthesis Problem over Infinite Data Domains

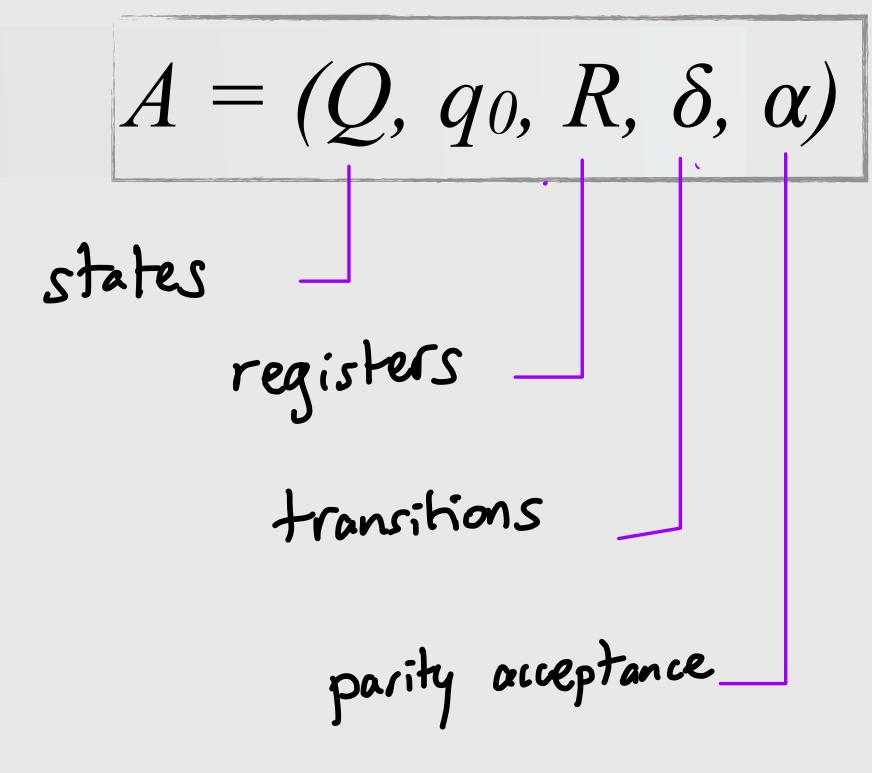
Definition

Input: a specification language $S \subseteq \mathcal{D}^{\omega}$ where \mathcal{D} is a data domain

Output: a Mealy machine with registers M such that $L(M) \subseteq S$

Specification: FO with \leq_d , constraint LTL, LTL with freeze quantifier, variable automata, det/nondet/universal register automata, ...

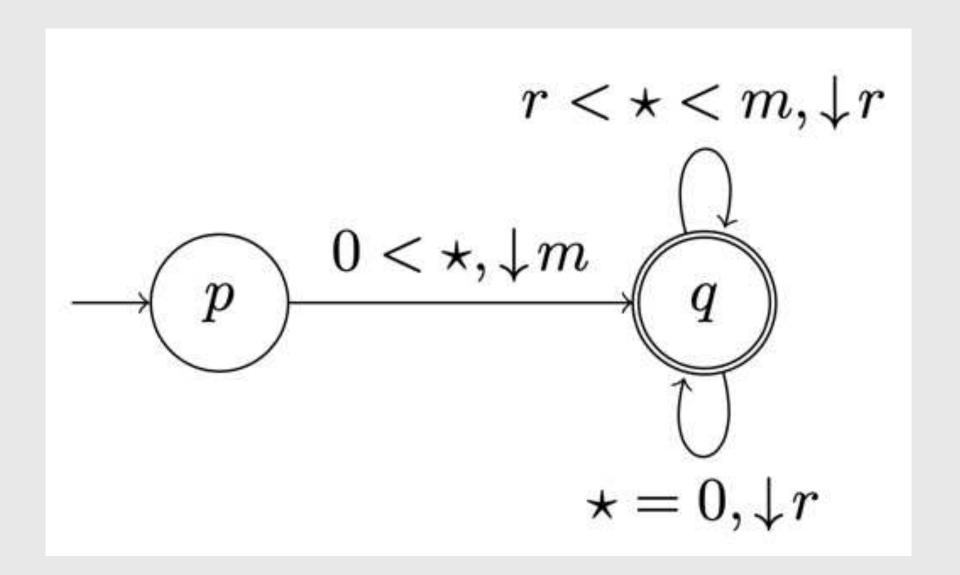
Register Automata on $(N, \leq, 0)$



$$\begin{array}{c} r<\star< m,\downarrow r\\ \hline \\ 0<\star,\downarrow m\\ \hline \\ \end{array}$$

Register Automata on $(N, \leq, 0)$

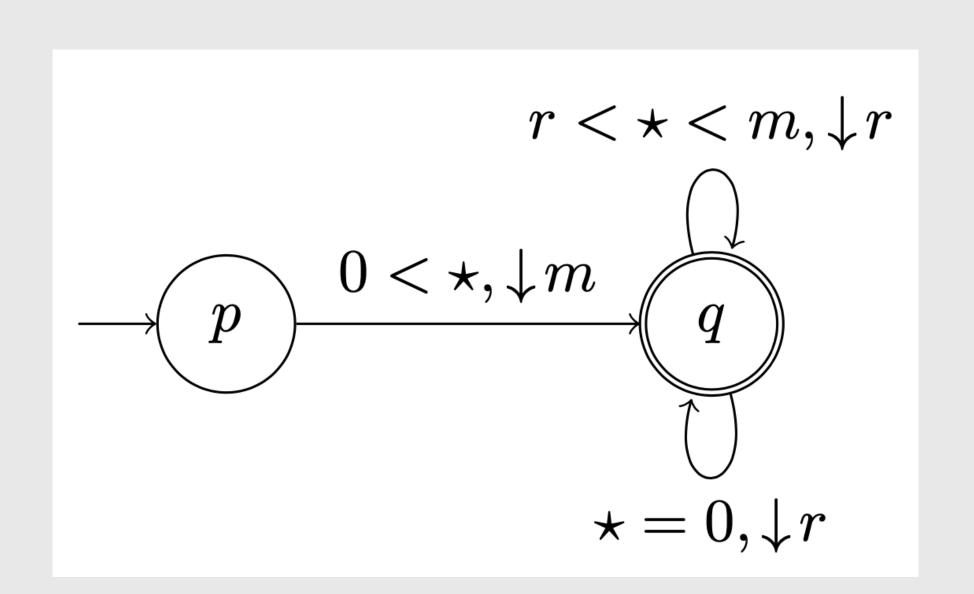
$$A = (Q, q_0, R, \delta, \alpha)$$

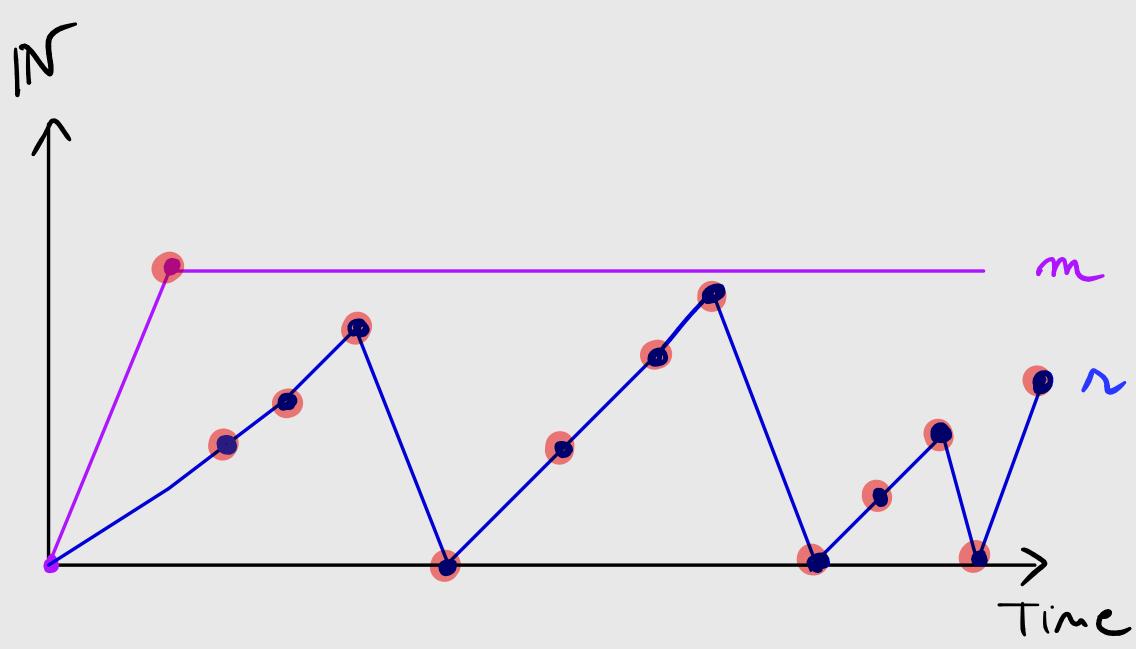


Run:
$$(p, 0, 0) \xrightarrow{5} (q, 5, 0) \xrightarrow{3} (q, 5, 3) \xrightarrow{4} (q, 5, 4) \xrightarrow{0} (q, 5, 0)$$

Register Automata on $(N, \leq, 0)$

$$A=(Q, q_0, R, \delta, \alpha)$$





Run:
$$(p, 0, 0) \xrightarrow{5} (q, 5, 0) \xrightarrow{3} (q, 5, 3) \xrightarrow{4} (q, 5, 4) \xrightarrow{0} (q, 5, 0)$$

Results

Synthesis problem

Input: a universal register automaton A over 20

Output: a Mealy machine with registers M such that $L(M) \subseteq L(A)$

	$(\mathbb{D}, =)$	$(\mathbb{Q},<)$	$(\mathbb{N}, <)$
Synthesis	× [3]	×	×

[3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021.

Results

Synthesis problem

Input: a universal register automaton A over 20

Output: a Mealy machine with registers M such that $L(M) \subseteq L(A)$

Register-Bounded Synthesis problem

Input: a universal register automaton A over \mathscr{D} and $k \in \mathbb{N}$

Output: a Mealy machine with k registers M such that $L(M) \subseteq L(A)$

	$(\mathbb{D}, =)$	$(\mathbb{Q},<)$	$(\mathbb{N}, <)$
Synthesis	× [3]	×	×

[3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021.

Results

Synthesis problem

Input: a universal register automaton A over 20

Output: a Mealy machine with registers M such that $L(M) \subseteq L(A)$

Register-Bounded Synthesis problem

Input: a universal register automaton A over \mathcal{D} and $k \in \mathbb{N}$

Output: a Mealy machine with k registers M such that $L(M) \subseteq L(A)$

	$(\mathbb{D}, =)$	$(\mathbb{Q},<)$	$(\mathbb{N}, <)$
Synthesis	× [3]	×	×
Register-bounded synthesis	√ [1,2]	√ [3]	√ [4]

[1]: R.Bloem, B.Maderbacher, A.Khalimov.: Bounded Synthesis of Register Transducers. 2019

[2]: L.Exibard, E.F., P.-A. Reynier: Synthesis of data word transducers. 2019.

[3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021.

[4]: L. Exibard, E.F., A. Khalimov: Generic solution to register-bounded synthesis. 2022.

Generic Solution to Register-Bounded Synthesis

Main ideas

- reduction to omega-regular synthesis over finite alphabets
- **sufficient condition** on the data domain allowing for such a reduction (regapprox domains)
- prove that $(\mathbb{Q}, <)$ and $(\mathbb{N}, <)$ are regapprox

 $S \subseteq Q \times Tests \times Assignments \times Q$ finite alphabet

of actions

=D see register automata as

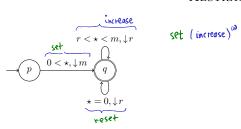
finite automata over action words

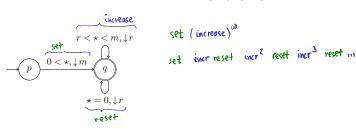
 $S \subseteq Q \times Tests \times Assignments \times Q$ finite alphabet
of actions

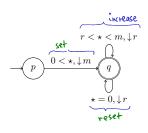
=D see register automata as finite automata over action words

register nator

NOTATION: Layatx (A) = def set of action words



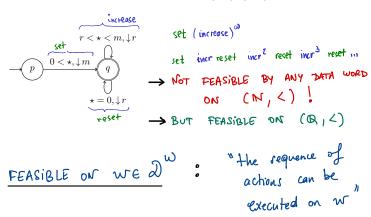


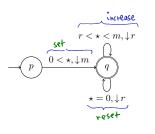


set increase) or reset incr² reset incr³ reset in

FEASIBLE or We 2

"The requence of actions can be executed on w"





set (increase)

set increset incre reset incres reset in on (N,c)

Any feasible action word has the form

set incr^{ng} reset incr^{nz}, where IB: every n; < B

FEASIBILITY IN (Q,<)

- Feasibility = local consistency

TYPES:
$$\{n=a=0\}$$
 $\{n>0=a\}$ $\{n=a>0\}$

FEASIBILITY IN (Q,<)

- Feasibility = local consistency

TYPES:
$$\{n=a=0\}$$
 $\{n>0=a\}$ $\{n=a>0\}$ INCONSISTENT!

FEASIBILITY IN (Q,<)

- Feasibility = local consistency

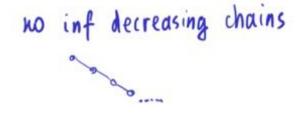
TYPES:
$$\{n=a>0\}$$
 $\{n>0=a\}$

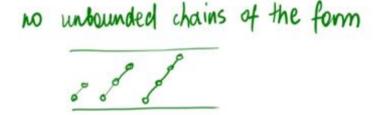
INCONSISTENT!

- Lemma: the set of feasible words is omega-regular

FEASIBILITY IN (N, <)

An action word is feasible iff it has:





FEASIBILITY IN (N, <)

An action word is feasible iff it has:

Let FEAS be the set of feasible action words over given R.

REDUCTION TO FINITE ALPHABETS

Given S and k, create a finite-alphabet specification $W_{S,k}$: $W_{S,k} \text{ is realizable by a Mealy machine}$ \Leftrightarrow S is realizable by a Mealy machine

REDUCTION TO FINITE ALPHABETS

Given S and k, create a finite-alphabet specification $W_{S,k}$: $W_{S,k} \text{ is realizable by a Mealy machine}$ \Leftrightarrow S is realizable by a Mealy machine

$$\begin{split} \overline{W_{S,k}} &= \{ \overline{a}_M \mid \exists \overline{a}_S \not\in L_{syntx}(S) \cdot \exists w \in \mathscr{D}^\omega \cdot w \models \overline{a}_M \wedge w \models \overline{a}_S \} \\ &= \{ \overline{a}_M \mid \exists \overline{a}_S \not\in L_{syntx}(S) \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \} \end{split}$$

REDUCTION TO FINITE ALPHABETS

Given S and k, create a finite-alphabet specification $W_{S,k}$: $W_{S,k} \text{ is realizable by a Mealy machine}$ \Leftrightarrow S is realizable by a Mealy machine

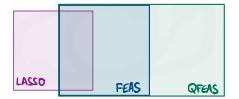
$$\overline{W_{S,k}} = \{ \overline{a}_M \mid \exists \overline{a}_S \notin L_{syntx}(S) \cdot \exists w \in \mathscr{D}^\omega \cdot w \models \overline{a}_M \land w \models \overline{a}_S \}$$

$$= \{ \overline{a}_M \mid \exists \overline{a}_S \notin L_{syntx}(S) \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \}$$
Not where the series of the property of the synthetic structure of the syn

Generic Solution

Data domain is regapprox if for every R there exists eff.constr. $\omega\textsubscript{\text{-}}$ regular over-approximation QFEAS

 $\mathsf{QFEAS} \cap lasso \subseteq \mathsf{FEAS} \subseteq \mathsf{QFEAS}.$



Theorem:

 $on\ regarprox\ domains,\ register-bounded\ synthesis\ is\ decidable.$

Lemma

S is realizable by a k-reg Mealy machine iff $W_{S,k}$ is realisable by a Mealy machine iff $W_{S,k}^{QF}$ is realizable by a Mealy machine

S is defined by a URA

$$W_{S,k} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$$

$$W_{S,k}^{\mathbf{QF}} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{QFEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$$

Lemma

S is realizable by a k-reg Mealy machine iff $W_{S,k}$ is realisable by a Mealy machine iff $W_{S,k}^{QF}$ is realizable by a Mealy machine

S is defined by a URA

$$W_{S,k} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \Rightarrow \overline{a}_S \in L_{\mathit{syntx}}(S) \}$$

$$W_{S,k}^{\mathbf{QF}} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{QFEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$$

Lemma

S is realizable by a k-reg Mealy machine iff $W_{S,k}$ is realisable by a Mealy machine iff $W_{S,k}^{QF}$ is realizable by a Mealy machine

S is defined by a URA

$$W_{S,k} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \Rightarrow \overline{a}_S \in L_{\mathit{syntx}}(S) \}$$

$$W_{S,k}^{\mathbf{QF}} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{QFEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$$

Lemma

S is realizable by a k-reg Mealy machine iff $W_{S,k}$ is realisable by a Mealy machine iff $W_{S,k}^{QF}$ is realizable by a Mealy machine

S is defined by a URA

$$W_{S,k} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{FEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$$

$$W_{S,k}^{\textit{QF}} = \{ \overline{a}_M \mid \forall \overline{a}_S \cdot \overline{a}_M \otimes \overline{a}_S \in \mathsf{QFEAS} \Rightarrow \overline{a}_S \in L_{syntx}(S) \}$$

Let M s.t. L(M) \$ L(Ws,k).

C because QFEAS O LASSO = PEAS O LASSO). So, L(M) & Ws,k

DOMAIN $(\mathbb{N}, <)$ is regapprox.

Recall that in (N, 4) action word is feasible iff there are no:

When considering lasso words:

Main Theorem

Reg-bounded synthesis in $(\mathbb{N}, <)$ is solvable in time exp(exp(r,k), n, c) for every given universal parity register automaton with r registers, n states, c priorities, and bound k.

A similar complexity holds for domains $(\mathbb{Q}, <)$ and $(\mathbb{D}, =)$.

REDUCTION BETWEEN DOMAINS

If \mathfrak{D} reduces to \mathfrak{D}' , and \mathfrak{D}' is regarder, then D is regarder.

Two definitions of reductions: A ection word in D \longrightarrow acton words in D' – via transducer relations, \longrightarrow A feas \Rightarrow A feas

via first-order formulas.

Allows us to state decision ($\mathbb{N}^d, <^d$) and (Σ^*, \prec). Allows us to state decidability of register-bounded synthesis

Conclusion

	$(\mathbb{D}, =)$	(\mathbb{Q}, \neq)	(N, <)	
Synthesis	× [3]	×	×	
Register-bounded synthesis	√ [1,2]	√ [3]	√ [4]	(R)=1 %.

- not in this talk: synthesis is decidable for deterministic register-automata
- future directions / open questions:
 - other data domains: strings with subword relation, sets of natural numbers with inclusion, ...
 - decidable data-synthesis framework capturing realistic request/grant example
 - parameterised synthesis
 - logical specifications: under for $FO_2[<_{pos}, succ_{pos}, =_{data}]$, what about $FO_2[<_{pos}, =_{data}]$?
 - implementation: refinement techniques