
Based on joint works with 

  LEO EXIBARD                                      AYRAT KHALIMOV                            PIERRE-ALAIN REYNIER

REACTIVE SYNTHESIS OVER 
INFINITE DATA DOMAINS

EMMANUEL FILIOT (ULB) 



Intro

• Reactive synthesis (RS): automatically construct a reactive system from a 
specification of correct semantical behaviours  

• Formal methods for RS: logic/automata/games, focus on control, ignore data 

• Objective: extend formal methods for RS with data 

• In this talk:  

• Questions:  

• How to model specifications ? How to model reactive systems ? 

• What’s decidable ? For which data domains ?

S ⊆ (ActionsEnv . ActionsSys)
ω

S ⊆ [(ActionsEnv × #) . (ActionsSys × #)]ω

Reactive 

System
Environment

ActionsEnv

ActionsSys



(Data-free) Reactive Synthesis Problem

Reactive 

System
Environment

I

O

i1 . o1 . i2 . o2… ∈ (I . O)ω

Synthesis Problem 

Input: a specification language  

Output: a Mealy machine M such that 

S ⊆ (IO)ω

L(M) ⊆ S



Example 1

•  

• Spec: “relay input up to first c, or forever if no c”

I = O = {a, b, c}

S = (aa + bb)ω + (aa + bb)*cc(IO)ω
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Example 2

•  

• Spec: 

• Unrealizable !

I = O = {a, b, c}

S = (aa + ba)ω + (aa + bb)*cc(IO)ω
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Example 3: request / grant

•  finite 

•  

•  

• Spec:

C ⊆ ℕ

I = {reqi ∣ i ∈ C} ∪ {¬req}

O = {grti ∣ i ∈ C} ∪ {¬grt}

⋀
i∈C

G(reqi → F(grti))

l



Example 3: request / grant

•  finite 

•  

•  

• Spec:

C ⊆ ℕ

I = {reqi ∣ i ∈ C} ∪ {¬req}

O = {grti ∣ i ∈ C} ∪ {¬grt}

⋀
i∈C

G(reqi → F(grti))

|

> req Tyrant C- { 1
,
. . .

,
n}

reqn grant,
<

reqn granth
. .

.

'



Example 4: request/grant with delay

• Any request must be granted after at least d input steps 

• For d =1 and |C| = 2:

In general: machine with  statesO( |C |
d
)
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Important results in reactive synthesis

• Classical approach: logic → automata → deterministic automata → games 

• Regular spec: LTL, MSO, non-det Büchi automata, universal coBüchi automata, 
det parity automata, good-for-games automata, …

• Game theory on graphs 

• Tools: Strix, LTLSynth, AcaciaBonzai, … 

• Yearly synthesis competition since 2014

v
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Delayed request/grant example revisited

• Spec: “Any request must be granted after at least d input steps” 

•    

•  

•  

• Spec realizable by a Mealy machine with registers. For d=1:

C ⊆ ℕ C = ℕ

I = {(req, i) ∣ i ∈ C} ∪ {¬req}

O = {(grt, i) ∣ i ∈ C} ∪ {¬grt}

➔ Priorities between processes: data domain  (ℕ, ≤ )

➔ in general: Mealy machine with O(d) states and O(d) registers
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Synthesis Problem over Infinite Data Domains

Definition 

Input: a specification language  where  is a data domain 

Output: a Mealy machine with registers M such that 

S ⊆ #ω #

L(M) ⊆ S

Specification: FO with , constraint LTL, LTL with freeze quantifier, variable 

automata, det/nondet/universal register automata, …  

≤d



Register Automata on (ℕ, ≤ ,0) A = (Q, q0, R, ", #)
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Results

Synthesis problem 

Input: a universal register automaton A over  

Output: a Mealy machine with registers M such that 

!

L(M) ⊆ L(A)

Register-Bounded Synthesis problem 

Input: a universal register automaton A over  and  

Output: a Mealy machine with k registers M such that 

! k ∈ ℕ

L(M) ⊆ L(A)

Synthesis ✘ [3] ✘ ✘

Register-bounded synthesis ✓ [1,2] ✓[3] ✓ [4]

(%, = ) (ℚ, < ) (ℕ, < )

[1]: R.Bloem, B.Maderbacher, A.Khalimov.: Bounded Synthesis of Register Transducers. 2019


[2]: L.Exibard, E.F., P.-A. Reynier: Synthesis of data word transducers. 2019.


[3]: L. Exibard: Automatic Synthesis of Systems with Data (PhD thesis), 2021.


[4]: L. Exibard, E.F., A. Khalimov: Generic solution to register-bounded synthesis. 2022. 
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Generic Solution to Register-
Bounded Synthesis

Thanks to Ayrat for the slides !



Main ideas

• reduction to omega-regular synthesis over finite alphabets 

• sufficient condition on the data domain allowing for such a reduction (regapprox 
domains) 

• prove that  and   are regapprox(ℚ, < ) (ℕ, < )



Insight 1: Abstraction

p q
0 < ⌅, ↓m

r < ⌅ < m, ↓r

⌅ = 0, ↓r

An action word is a sequence (tst0, asgn
0
)(tst1, asgn

1
) . . ..

It is feasible if it is induced by some data word.

Let FEAS be the set of feasible action words over given R.

S ≤ ☒N' Tests ✗ Assignment ✗ Q

-

finite alphabet
0f actions

=D see register automata as

finite automata over action wards
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FEASIBILITY IN

- Feasibility = local consistency 

(Qin )
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TYPES :{n=s=0} { r> ◦=ˢ} { r=s > °}
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FEASIBILITY IN

- Feasibility = local consistency 

- Lemma: the set of feasible words is omega-regular 
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FEASIBILITY IN

An action word is feasible iff it has:
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Insight 1: Abstraction

Given S and k, create a finite-alphabet specification WS,k:

WS,k is realizable by a Mealy machine

⇔

S is realizable by a k-reg transducer.

W
F

S,k = ¬
⇧

aT | ∃aS ∈ L(Ssynt) : aT ⊗ aS ∈ FEAS
⌃

.

Solving such a synthesis problem is hard, as FEAS is not ω-regular :-(

REDUCTION TO FINITE ALPHABETS

NOT W - REGULAR IN GENERAL !
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Generic Solution

Data domain is regapprox if for every R there exists eff.constr. ω-

regular over-approximation QFEAS

QFEAS ∩ lasso ⊆ FEAS ⊆ QFEAS.

Theorem:

on regapprox domains, register-bounded synthesis is decidable.

TESTG.
LASSO

FEAS QFEAS



WS,k = {aM ∣ ∀aS ⋅ aM ⊗ aS ∈ FEAS ⇒ aS ∈ Lsyntx(S)}

WQF

S,k
= {aM ∣ ∀aS ⋅ aM ⊗ aS ∈  QFEAS ⇒ aS ∈ Lsyntx(S)}

Lemma  

S is realizable by a k-reg Mealy machine iff  

 is realisable by a Mealy machine iff 

 is realizable by a Mealy machine

WS,k

WQF

S,k

PROOF IDEA

S is defined by a URA

Â

AS FEAS ≤ QFEAS , WÊÎ ≤ WÇK

So
, WÎÛ is hardes to realize .
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Domain (N, <)



Main Theorem

Reg-bounded synthesis in (N, <) is solvable in time

exp(exp(r, k), n, c)

for every given universal parity register automaton

with r registers, n states, c priorities, and bound k.

A similar complexity holds for domains (Q, <) and (D, =).



Reduction between Domains

If D reduces to D
�, and D

� is regapprox, then D is regapprox.

Two definitions of reductions:

– via transducer relations,

– via first-order formulas.

Allows us to state decidability of register-bounded synthesis

for (Nd, <d) and (Σ⇥, �).

↑
p? ation



Conclusion

Synthesis ✘ [3] ✘ ✘

Register-bounded synthesis ✓ [1,2] ✓[3] ✓ [4]

(!, = ) (ℚ, = ) (ℕ, < )

• not in this talk: synthesis is decidable for deterministic register-automata 

• future directions / open questions:   

• other data domains: strings with subword relation, sets of natural numbers with inclusion, … 

• decidable data-synthesis framework capturing realistic request/grant example 

• parameterised synthesis 

• logical specifications: undec for FO2[<pos,succpos,=data], what about FO2[<pos,=data] ? 

• implementation: refinement techniques

à
☐

-

me for IRI ≥ 2

1M -1 ??


