The Fatou property of submonoids of $A^* \times B^*$

Luc Boasson and Olivier Carton

IRIF – CNRS and Université Paris Diderot

ANR DeLTA – Bordeaux
Janvier 2017
Outline

The problem

(Well) Known results

What’s new

Nasty examples

Technics

Motivation
Global vs Local constraints

Global constraints of input/output: \(\text{monoid } M \subseteq A^* \times B^* \)

A relation \(R \subseteq M \) realized by some transducer.

Length-preserving function

\[
\{a, b\}^* \rightarrow \{a, b\}^*
\]

\[
a_1a_2a_3 \cdots a_n \mapsto a_2a_3 \cdots a_na_1
\]

Here \(M = \{(u, v) : |u| = |v|\} \)

Question: can \(R \) be realized by a transducer with labels in \(M \)?

This question can be rephrased as the following **Fatou property**:

\[
R \in \text{Rat}(A^* \times B^*) \land R \subseteq M \quad \overset{?}{\Rightarrow} \quad R \in \text{Rat}(M)
\]
Transducers

Transitions $p \xrightarrow{a:v} q$ for $a \in A$, $v \in B^*$.
Example
Example

\[
\begin{array}{c}
\text{0 : 0} \quad q_0 \quad 1 : 1 \quad q_1 \quad 1 : \varepsilon \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & \ldots\\
\end{array}
\]

\[
\begin{array}{c}
\text{q}_0 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & \ldots\\
\end{array}
\]
Example
Example

\[
\begin{array}{c}
0: 0 \quad q_0 \\
\rightarrow \\
1: 1 \\
\rightarrow \\
0: 0 \\
\rightarrow \\
1: \varepsilon \\
q_1
\end{array}
\]

\[
\begin{array}{cccccccccc}
\vdots
& 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\end{array}
\]
Example

\[
\begin{array}{c}
q_0 & \rightarrow & 1:1 \\
0:0 & \rightarrow & q_1 \\
0:0 & \rightarrow & \varepsilon \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
\end{array}
\]
Example

\[
\begin{array}{c}
q_0 \\
0 : 0 \\
0 : 0 \\
\end{array}
\quad \begin{array}{c}
1 : 1 \\
q_1 \\
1 : \varepsilon \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{c}
q_0 \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
0 & 1 & 0 & 0 & 1 \\
\end{array}
\]
Example
Example

The diagram represents a finite automaton with two states, q_0 and q_1. The transitions are as follows:
- From q_0, on input 0, it stays in q_0.
- From q_0, on input 1, it goes to q_1.
- From q_1, on input 0, it stays in q_1.
- From q_1, on input 1, it goes to q_1.

The automaton accepts the language $L_2 = \{0^n1^n \mid n \geq 0\}$.
Example

\[q_0 \quad \rightarrow \quad 1 : 1 \quad \rightarrow \quad q_1 \]

0 : 0 \quad \rightarrow \quad q_0 \quad \rightarrow \quad 0 : 0 \quad \rightarrow \quad q_1 \quad \rightarrow \quad 1 : \varepsilon

\[\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
\end{array} \]

\[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 0 \quad \cdots
\end{array} \]
Length preserving relations

\[M = \{(u, v) : |u| = |v|\} \]

Theorem (Elgot & Mezei 65)

The following conditions are equivalent for a rational relation \(R \)

\[R \subseteq M \]

\[R \text{ is realized by a transducer such that each transition } p \xrightarrow{u:v} q \text{ satisfies } (u, v) \in M, \text{ that is } |u| = |v|. \]
Length decreasing relations

\[M = \{(u, v) : |u| \geq |v|\} \]

Theorem (Leguy 81)

The following conditions are equivalent for a rational relation \(R \)

\(R \subseteq M \)

\(R \) is realized by a transducer such that each transition \(p \xrightarrow{u:v} q \) satisfies \((u, v) \in M\), that is \(|u| \geq |v| \).

Key ingredients:

- The condition is satisfied for cycles.
- The delay is therefore bounded.
- The synchronized transducer uses two buffers of bounded size.
Stable monoids

A submonoid of \mathbb{N}^k is called stable if one of the two equivalent statements hold.

- $N = C \cap H$ where C closed cone of \mathbb{N}^k and H subgroup of \mathbb{Z}^k
- $\forall u \in N, \forall v \in \mathbb{N}^k \quad u + v^\oplus \subseteq N \implies v \in N$

Theorem (Sakarovitch)

If $M = \mu^{-1}(N)$ where $\mu : A^* \times B^* \to \mathbb{N}^k$ and N stable monoid of \mathbb{N}^k, then M has the Fatou property.

\[R \in \text{Rat}(A^* \times B^*) \land R \subseteq M \implies R \in \text{Rat}(M) \]
Negative example

Let M be the monoid

$$M = \{(a, \varepsilon), (\varepsilon, a), (b, b)\}^* = \{(u, v) : |u|_b = |v|_b\}$$

This transducer realizes the relation R given by

$$R = \{(ba^n, a^n b) : n \geq 0\} \subset M.$$

This relation cannot be realized by a transducer over M. The monoid M does not have the Fatou property.
A monoid $M \subseteq A^* \times B^*$ is quasi-unary if

$$(u, v) \in M \land |v| = |v'| \implies (u, v') \in M.$$
The subword monoid

A word \(v = a_1 \cdots a_n \) is a **subword** of a word \(u \), denoted \(v|u \), if there exist \(n + 1 \) words \(u_0, \ldots, u_n \) such that \(u = u_0 a_1 u_1 \cdots a_n u_n \).

\[u \]
\[\begin{array}{ccccccc}
 & u_0 & a_1 & u_1 & a_2 & u_2 & a_3 & \cdots & a_n & u_n \\
\end{array} \]

\[v \]
\[\begin{array}{ccccccc}
 & a_1 & a_2 & a_3 & \cdots & a_n \\
\end{array} \]

Theorem

The monoid \(M = \{(u, v) : v|u\} \) has the Fatou property.
Nasty examples

Let $\mu : A^* \to B^*$ be a morphism. The graph of μ

$$M = \{(u, \mu(u)) : u \in A^*\}$$

has the Fatou property. What about finite substitutions?

$$M = \{(a, a), (a, b), (a, \varepsilon), (b, b)\}^*$$

$R = \{(a^{2m+1}ba^{2n+1}, ba^m n b) : m, n \geq 0\}$

The relation R satisfies $R \subset M$ since $m + n \leq \max(2m, 2n)$ but it cannot realized by a transducer with labels in M.

$$M = \{(a, a), (a, \varepsilon), (b, b), (b, a)\}^*$$

Open question: does this monoid M have the Fatou property?
Delays

A run ρ of label $(u, v) = (u_1 \cdots u_n, v_1 \cdots v_n)$

$$q_0 \xrightarrow{u_1:v_1} q_1 \xrightarrow{u_2:v_2} q_2 \cdots q_{n-1} \xrightarrow{u_n:v_n} q_n$$

A M-factorization ϕ of (u, v)

$$(u, v) = (a_1, w_1) \cdots (a_m, w_m) \quad \text{where} \quad (a_i, w_i) \in M$$

The delay between ρ and ϕ in q_i is

$$d(\rho, \phi, i) = |v_1 \cdots v_i| - |w_1 \cdots w_j| \quad \text{where} \quad u_1 \cdots u_i = a_1 \cdots a_j$$

The delay between ρ and ϕ is $d(\rho, \phi) = \max_{1 \leq i \leq n} d(\rho, \phi, i)$.
The delay of ρ is $d(\rho) = \min_\phi d(\rho, \phi)$

The delay of the transducer is $d(\mathcal{T}) = \max_\rho d(\rho)$
Delays (continued)

Proposition

Any transducer \mathcal{T} of bounded delay n such that $|\mathcal{T}| \subseteq M$ is equivalent to the transducer \mathcal{T}_n over M.

For all known example (M_\approx, M_\leq, subword monoid), it is shown that if transducer \mathcal{T} satisfies $|\mathcal{T}| \subseteq M$, then its delay must be bounded. What about the converse?

Proposition

Let M be a fixed monoid. If there exists a computable function f such that for any transducer \mathcal{T}, $|\mathcal{T}| \subseteq M$ implies that the delay of \mathcal{T} is bounded by $f(\mathcal{T})$, then, it is decidable whether $|\mathcal{T}| \subseteq M$.
Non-finitely generated monoid

For any non-negative real number α, let M_α

$$M_\alpha = \{(u, v) : |u| \leq \alpha |v|\}$$

Proposition

For any irrational number α, the monoid M_α is not finitely generated but it has the Fatou property.

A rational non-finitely generated cannot have the Fatou property.
The weak Fatou property

A monoid M has the weak Fatou property if

$$R \in \text{Rat}(A^* \times B^*) \land R \subseteq M \implies R \in \text{Rat}(\text{Rec}(M))$$

Proposition

The monoid $M = \{(\varepsilon, \varepsilon)\} \cup \{(u, v) : |u| \neq 0\}$ has the weak Fatou property.

For any non-negative real number α, let M_α

$$M'_\alpha = \{(u, v) : |u| < \alpha |v|\}$$

Proposition

For any rational number α, the monoid M'_α is not finitely generated and it does not have the weak Fatou property.
Infinite words

\[R = \{(a^n (b a)^\omega, b a^n b^\omega) : n \geq 0\} = (\varepsilon, b)(a, a)^*(b a, b)^\omega. \]

For each integer \(n \), the output \(\omega \)-word \(b a^n b^\omega \) is a subword of the input \(\omega \)-word \(a^n (b a)^\omega \). However, this relation cannot be realized by a transducer with labels in \(M = \{(u, v) : v|u\}\).
Normality (Borel 1909)

The number of occurrences of a word \(u \) in a word \(w \) is

\[
\text{occ}(w, u) = \#\{i : w[i..i + |u| - 1] = u\}
\]

An infinite word \(x \in A^\omega \) (resp. a real number \(\xi \)) is simply normal (in base \(b \)) if for any \(a \in A \),

\[
\lim_{n \to \infty} \frac{\text{occ}(x[1..n], a)}{n} = \frac{1}{b}.
\]

An infinite word \(x \in A^\omega \) (resp. a real number \(\xi \)) is normal (in base \(b \)) if for any \(u \in A^* \),

\[
\lim_{n \to \infty} \frac{\text{occ}(x[1..n], u)}{n} = \frac{1}{b^{|u|}}.
\]

In base \(b = 2 \), this means

- the frequencies in \(x \) of the 2 digits 0 and 1 are 1/2,
- the frequencies in \(x \) of the 4 words 00, 01, 10, 11 are 1/4,
- the frequencies in \(x \) of the 8 words 000, 001, \ldots, 111 are 1/8,
- \ldots
Selection rules

- If $x = a_1a_2a_3 \cdots$ is a normal infinite word, then so is $x' = a_2a_3a_4 \cdots$ made of symbols at all positions but the first one.
- If $x = a_1a_2a_3 \cdots$ is normal infinite word, then so is $x' = a_2a_4a_6 \cdots$ made of symbols at even positions.
- What about selecting symbols at positions 2^n?
- What about selecting symbols at prime positions?
- What about selecting symbols following a 1?
- What about selecting symbols followed by a 1?
Prefix selection

Let $L \subseteq A^*$ be a set of finite words and $x = a_1a_2a_3\cdots \in A^\omega$. The prefix selection of x by L is the word $x \upharpoonright L = a_{i_1}a_{i_2}a_{i_3}\cdots$ where $\{i_1 < i_2 < i_3 < \cdots\} = \{i : a_1a_2\cdots a_{i-1} \in L\}$.

Example (Symbols following a 1)

If $L = (0 + 1)^*1$, then $i_1 - 1, i_2 - 1, i_3 - 1$ are the positions of 1 in x and $x \upharpoonright L$ is made of the symbols following a 1.

Theorem (Agafonov 1968)

Prefix selection by a rational set of finite words preserves normality.

The selection can be realized by a transducer.

Example (Selection of symbols following a 1)

\[
\begin{array}{c}
0: \varepsilon \\
\downarrow \\
0 \\
\end{array}
\quad
\begin{array}{c}
1: \varepsilon \\
\end{array}
\quad
\begin{array}{c}
1: 1 \\
0: 0 \\
\end{array}
\quad
\begin{array}{c}
0: 1 \\
\end{array}
\]

\begin{array}{c}
0: \varepsilon \\
\downarrow \\
1 \\
\end{array}
\quad
\begin{array}{c}
1: \varepsilon \\
\end{array}
\quad
\begin{array}{c}
1: 1 \\
0: 0 \\
\end{array}
\quad
\begin{array}{c}
0: 1 \\
\end{array}
Open questions

- Find a characterization of submonoids $M \subseteq A^* \times B^*$ having the Fatou property.
- For each submonoid $M \subseteq A^* \times B^*$ having the Fatou property, this naturally raises the second problem whether the Fatou property implies the decidability of the inclusion $R \subseteq M$.