How to prove that a language is regular or star-free?

Jean-Éric Pin¹

¹IRIF, CNRS and Université de Paris Cité

CIRM, Mai 2022, Luminy

Table of Contents

1 Definitions and early results

- **2** Iteration properties
- **3** Rewriting systems
- **4** Well quasi-orders
- **5** Logic
- 6 Transductions and profinite topology
- ${\color{black} {\color{black} 7}}$ Functions from ${\color{black} \mathbb N}$ to ${\color{black} \mathbb N}$

Part V

Logic

$$\varphi = \exists x \ \mathbf{a} x$$

$$L = A^* a A^*$$

$$\varphi = \exists x \ \exists y \ \exists z \ x < y \land y < z \land \mathbf{a} x \land \mathbf{b} y \land \mathbf{c} z$$

$$L = A^* a A^* b A^* c A^*$$

$$\varphi = \exists x \ (\forall y \ \neg y < x \land \mathbf{a} x)$$

$$L = a A^*$$

▲ I I I F CNRS and Université de Paris Cité

Logic

For each letter $a \in A$, let **a** be a unary predicate symbol, where **a**x is interpreted as "the letter in position x is an a".

To each word $u \in A^+$ is associated a structure $\mathcal{M}_u = (\{1, 2, \dots, |u|\}, \mathbf{S}, <, (\mathbf{a})_{a \in A})$ where < is interpreted as the usual order on $\{1, 2, \dots, |u|\}$ and \mathbf{S} is the successor relation.

The language defined by a sentence φ is

 $L(\varphi) = \{ u \in A^* \mid \mathcal{M}_u \text{ satisfies } \varphi \}$

Logical fragments

Let **FO**[<], **MSO**[<] denote the set of first-order and monadic second-order formulas of signature $\{<, (\mathbf{a})_{a \in A}\}$, respectively.

Let MSO[S] and SO[S] denote the set of monadic second-order and second-order formulas of signature $\{S, (\mathbf{a})_{a \in A}\}$, respectively.

Logic on words

Theorem (Buchi 1960, Elgot 1961, Trakhtenbrot 1973)

MSO[S] captures the class of regular languages.

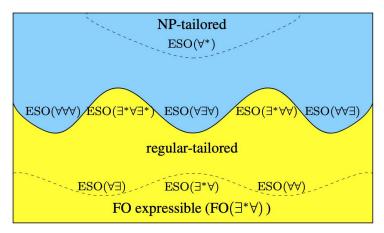
Theorem (McNaughton 1971)

FO[<] captures the class of star-free languages.

In general, second order logic captures some non-regular languages, but two successive results led to a complete characterisation of the syntactic fragments that only capture regular languages. Existential second order (ESO or Σ_1^1) For example, ESO($\exists^*\forall\exists^*$) is the class of all formulas $\exists R_1 \cdots \exists R_n \ \exists x_1 \cdots \exists x_p \ \forall y \ \exists z_1 \cdots \exists z_q$ $\varphi(R_1, \dots, R_n, x_1, \dots, x_p, y, z_1, \dots, z_q)$ where φ is quantifier-free and R_1, \dots, R_n are relation symbols.

ESO-prefix classes (pictures from EGS 2010)

Eiter, Gottlob, Gurevich 00 and Eiter, Gottlob, Schwentick 02



Beyond existential second-order

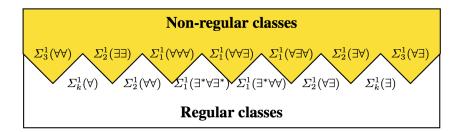


Fig. 2. Maximal regular and minimal non-regular SO prefix classes on strings For instance $\Sigma_2^1(\forall \exists)$ corresponds to formulas $\exists R_1 \cdots \exists R_n \ \forall S_1 \cdots \forall S_m \ \forall x \ \exists y$ $\varphi(R_1, \ldots, R_n, S_1, \ldots, S_m, x, y)$ where $R_1, \ldots, R_n, S_1, \ldots, S_m$ are relations and φ is quantifier-free.

Linear temporal logic (LTL)

The vocabulary consists of an atomic proposition p_a for each letter a, the usual connectives \lor , \land and \neg and the temporal operators **X** (next), **F** (eventually) and **U** (until).

Theorem (Kamp 1968)

A language is star-free iff it is LTL-definable.

Rabin's tree theorem

For each letter a, let S_a be a binary relation symbol, interpreted on A^* as follows: $S_a(u, v)$ iff v = ua.

Theorem (Rabin 1969)

A language is regular iff it is definable in $MSO[(S_a)_{a \in A}]$.

Part VI

Transductions and profinite topology

Let M and N be monoids. A transduction $\tau: M \to N$ is a relation on M and N, viewed as a function from M to $\mathcal{P}(N)$.

The inverse transduction $\tau^{-1} \colon N \to M$ is defined by $\tau^{-1}(Q) = \{m \in M \mid \tau(m) \cap Q \neq \emptyset\}.$

Recognizable subsets of a monoid

Let L be a subset of a monoid M. A monoid Nrecognizes L if there exists a surjective morphism h: $M \to N$ such that such that $L = h^{-1}(h(L))$.

Let $\operatorname{Rec}(M)$ denote the set of recognizable subsets of M (= recognized by some finite monoid.).

For A^* , recognizable = regular = rational.

Transductions preserving recognizability

A function [transduction] $f: M \to N$ preserves recognizability if, for each recognizable subset R of $N, f^{-1}(R)$ is recognizable.

Proposition (Pin-Silva 2005)

The function $g: A^* \times \mathbb{N} \to A^*$ defined by $g(x, n) = x^n$ preserves recognizability.

Let $\tau_n \colon A^* \to (A^*)^n$ be defined by $\tau_n(u) = \{(u_1, \dots, u_n) \mid u_1 \cdots u_n = u\}$ Then both τ_n and τ_n^{-1} preserve recognizability.

Residually finite monoids

A monoid N separates two elements x, y of a monoid M if there exists a monoid morphism $h: M \to N$ such that $h(x) \neq h(y)$.

A monoid M is residually finite if any pair of distinct elements of M can be separated by a finite monoid.

Let \mathcal{M} be the class of monoids that are finitely generated and residually finite. This class includes finite monoids, free monoids, free groups, trace monoids and their products.

Profinite metric on a monoid M of \mathcal{M}

Let, for each
$$(u, v) \in M^2$$
,
 $r(u, v) = \min\{\operatorname{Card}(N) \mid N \text{ separates } u \text{ and } v\}$
 $d(u, v) = 2^{-r(u,v)}$

with the usual conventions $\min \emptyset = +\infty$ and $2^{-\infty} = 0.$ Then

 $\begin{aligned} &d(u,w) \leqslant \max(d(u,v),d(v,w)) \quad \text{(ultrametric)} \\ &d(uw,vw) \leqslant d(u,v) \\ &d(wu,wv) \leqslant d(u,v) \end{aligned}$ Then (M,d) is a metric monoid.

Uniform continuity

Proposition

Let $M, N \in \mathcal{M}$. A function $f : M \to N$ is preserves recognizability if and only if it is uniformly continuous for the profinite metrics.

Uniform continuity

Proposition

Let $M, N \in \mathcal{M}$. A function $f : M \to N$ is preserves recognizability if and only if it is uniformly continuous for the profinite metrics.

What about transductions $\tau: M \to N$?

Hausdorff metric

The completion of the metric monoid (M, d) is a compact metric monoid \widehat{M} . The set $\mathcal{K}(\widehat{M})$ of compact subsets of \widehat{M} is also a compact monoid for the Hausdorff metric.

The Hausdorff metric on $\mathcal{K}(\widehat{M})$ is defined as follows. For $K, K' \in \mathcal{K}(\widehat{M})$, let

$$\delta(K, K') = \sup_{x \in K} d(x, K')$$

$$h(K, K') = \max(\delta(K, K'), \delta(K', K))$$

+ special definition if K or K' is empty

The case of transductions

Let M and N be monoids of \mathcal{M} and let $\tau: M \to N$ be a transduction.

Define a map $\widehat{\tau} : M \to \mathcal{K}(\widehat{N})$ by setting, for each $x \in M$, $\widehat{\tau}(x) = \overline{\tau(x)}$.

Theorem (Pin-Silva 2005)

The transduction τ is preserves recognizability iff $\hat{\tau}$ is uniformly continuous for the Hausdorff metric.

An exercise

If L is regular, then $K = \{ u \in A^* \mid u^{|u|} \in L \}$ is also regular.

Proof. Indeed, $K = h^{-1}(L)$, where $h(u) = u^{|u|}$. Now $h = g \circ f$ $u \xrightarrow{f} (u, |u|) \xrightarrow{g} u^{|u|}$

and f and g are both uniformly continuous. Thus K is regular.

Matrix representations

$$a \mid a$$
 1 $b \mid b$
 $\mu(a) = a \quad \mu(b) = b \quad \mu(u) = u$
 $f_1(u) = uu \qquad f_1(u) = (\mu(u))^2$
 $f_2(u) = uau^2 \qquad f_2(u) = \mu(u)a\mu(u)$

$$\tau_1(u) = u^*$$

$$au_2(u) = igcup_{p \ \mathsf{prime}} u^p$$

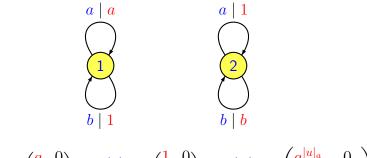
$$f_{1}(u) = (\mu(u))^{2}$$

$$f_{2}(u) = \mu(u)a\mu(u)^{2}$$

$$\tau_{1}(u) = \sum_{n \ge 0} \mu(u)^{n}$$

$$\tau_{2}(u) = \sum_{p \text{ prime}} \mu(u)^{p}$$

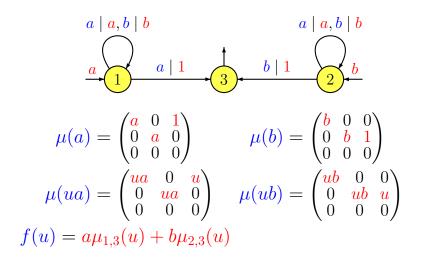
$$f(u) = a^{|u|_a} b^{|u|_b}$$



$$egin{aligned} \mu(a) &= egin{pmatrix} a & 0 \ 0 & 1 \end{pmatrix} & \mu(b) &= egin{pmatrix} 1 & 0 \ 0 & b \end{pmatrix} & \mu(u) &= egin{pmatrix} a^{|u|_a} & 0 \ 0 & b^{|u|_b} \end{pmatrix} \ f(u) &= \mu_{1,1}(u)\mu_{2,2}(u) \end{aligned}$$

▲ III CNRS and Université de Paris Cité

 $f(u) = \operatorname{Last}(u)u$



Matrix representations

A transduction $\tau: A^* \to M$ admits a matrix representation (S, μ) of degree n if there exist a monoid morphism $\mu: A^* \to \mathcal{P}(M)^{n \times n}$ and a possibly infinite union of products S involving arbitrary subsets of M and n^2 variables $X_{1,1},\ldots,X_{n,n}$, such that, for all $u \in A^*$, $\tau(u) = S[\mu_{1\,1}(u), \dots, \mu_{n\,n}(u)].$ Example for n = 2: Let $(P_k)_{k \ge 0}$ be subsets of M. $S = \bigcup P_0 X_{1,1}^k P_k X_{2,1} X_{1,1}^k X_{2,2} P_{k!} X_{1,1} P_{2k}$ $k \in \mathbb{N}$

Matrix representation of transducers

Theorem (Pin-Sakarovitch 1983)

Let (S, μ) be a matrix representation of degree n of a transduction $\tau: A^* \to M$. Let P be a subset of M recognised by a morphism $\eta: M \to N$. Then the language $\tau^{-1}(P)$ is recognised by the submonoid $\eta\mu(A^*)$ of the monoid of matrices $\mathcal{P}(N)^{n \times n}$.

Corollary

Every transduction having a matrix representation preserves recognizability.

An exercise

Let L be a regular language and $T \subseteq \mathbb{N}^2$. Then $L_T = \{u \in A^* \mid \text{there exist } x, y \text{ and } (p,q) \in T$ such that |x| = p|u|, |y| = q|u| and $xuy \in L\}$ is regular.

Observe that $L_T = \tau^{-1}(L)$ where the transduction $\tau(u) = \bigcup_{(p,q)\in T} A^{p|u|} u A^{q|u|}$ admits the matrix representation (S, μ) , with $\mu(u) = \begin{pmatrix} A^{|u|} & \emptyset & \emptyset \\ \emptyset & u & \emptyset \\ \emptyset & \emptyset & A^{|u|} \end{pmatrix}$ and $S = \bigcup_{(p,q)\in T} X_{1,1}^p X_{2,2} X_{3,3}^q$

Some other examples

- Intersection: $L_1 \cap L_2 = \tau^{-1}(L_1 \times L_2)$ where $\tau : A^* \to A^* \times A^*$ is given by $\tau(u) = u \times u$.
- Concatenation product: $L_1L_2 = \tau^{-1}(L_1 \times L_2)$ where $\tau(u) = \{(u_1, u_2) \mid u_1u_2 = u\}$. $\mu(u) = \begin{pmatrix} (u, 1) & \{(u_1, u_2) \mid u = u_1u_2\} \\ \emptyset & (1, u) \end{pmatrix}$ (Schützenberger product)

(Schützenberger product)

- Shuffle: $L_1 \sqcup L_2 = \tau^{-1}(L_1 \times L_2)$ where $\tau(u) = \{(u_1, u_2) \mid u \in u_1 \sqcup u_2\}$. Here $\mu = \tau$.
- Union, quotients, morphisms, inverses of morphisms, and many others

If *L* is regular, then so are $\sqrt{L} = \{u \mid uu \in L\}$ and $\frac{1}{2}(L) = \{$ first halves of words in *L* $\}$. If *L* is star-free, then so is \sqrt{L} .

Proof. $\sqrt{L} = \tau^{-1}(L)$ where $\tau(u) = u^2$. Taking $\mu(u) = u$ shows that if a monoid recognizes L, then it also recognizes \sqrt{L} .

$$\begin{array}{l} \frac{1}{2}(L) = \tau^{-1}(L) \text{ where } \tau(u) = uA^{|u|}. \text{ Take} \\ \mu(u) = \begin{pmatrix} u & \emptyset \\ \emptyset & A^{|u|} \end{pmatrix} \end{array}$$

Streaming string transducers

A substitution $\sigma: A^* \to B^*$ is a monoid morphism from A^* to $\mathcal{P}(B^*)$.

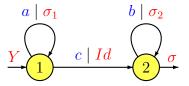
A streaming string transducer is a sequential transducer whose outputs are substitutions.

Theorem

Streaming string transducers preserve recognizability.

An example of streaming string transducer

The function $f(a^n cb^p) = a^p b^{pn}$ can be realized by the following streaming string transducer:

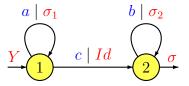


where $A = \{a, b, c\}$, $B = A \cup \{X, Y\}$ and $\sigma, \sigma_1, \sigma_2 : B^* \to B^*$ are substitutions defined by

$X\sigma_1 = X$	$Y\sigma_1 = YX$	$d\sigma_1 = d$ for $d \in A$
$X\sigma_2 = Xb$	$Y\sigma_2 = Ya$	$d\sigma_2 = d$ for $d \in A$
$X\sigma = 1$	$Y\sigma = 1$	$d\sigma = d$ for $d \in A$

Streaming string transducers at work

The function $f(a^n cb^p) = a^p b^{pn}$ can be realized by the following streaming string transducer:

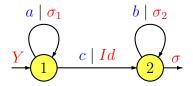


 $\tau(a^n c b^p) = Y \sigma_1^n \sigma_2^p \sigma = (Y X^n) \sigma_2^p \sigma = ((Y \sigma_2^p) (X \sigma_2^p)^n) \sigma$ $= ((Y a^p) (X b^p)^n) \sigma = a^p b^{pn}$

 $\begin{aligned} X\sigma_1 &= X & Y\sigma_1 = YX & d\sigma_1 = d \text{ for } d \in A \\ X\sigma_2 &= Xb & Y\sigma_2 = Ya & d\sigma_2 = d \text{ for } d \in A \\ X\sigma &= 1 & Y\sigma = 1 & d\sigma = d \text{ for } d \in A \end{aligned}$

Matrix representation of a sst

The function $f(a^n cb^p) = a^p b^{pn}$ can be realized by the following streaming string transducer:



Let M be the monoid of all substitutions from B^* into itself under composition. Then

 $\mu: A^* \to (M \cup \{0\})^{2 \times 2} \text{ is the morphism defined by}$ $\mu(a) = \begin{pmatrix} \sigma_1 & 0 \\ 0 & 0 \end{pmatrix} \quad \mu(b) = \begin{pmatrix} 0 & 0 \\ 0 & \sigma_2 \end{pmatrix} \quad \mu(c) = \begin{pmatrix} 0 & Id \\ 0 & 0 \end{pmatrix}$

Let $R \in \text{Rec}(B^*)$ and let $\eta : B^* \to N$ be a monoid morphism recognizing R (N finite).

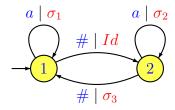
One can define a right action of M on the monoid $\mathcal{P}(N)^B$, which induces a monoid morphism π from M to the monoid T of all transformations on $\mathcal{P}(N)^B$.

Proposition (Pin, Reynier, Villevallois, 2018)

The language $\tau^{-1}(R)$ is recognized by the monoid morphism $\pi \circ \mu : A^* \to (T \cup \{0\})^{Q \times Q}$.

An other example of streaming string transducer

 $f(u_0 \# u_1 \# u_2 \# u_3 \# u_4 \# u_5 \# \cdots \# u_n) = u_1 \# u_0 \# u_3 \# u_2 \# u_5 \# u_4 \# \cdots \# u_n \text{ is realized by the sst:}$



where $A = \{a, b, \#\}$, $B = A \cup \{X, Y, Z\}$ and $\sigma, \sigma_1, \sigma_2 : B^* \to B^*$ are substitutions defined by

$$\begin{aligned} X\sigma_1 &= X & Y\sigma_1 &= Ya & Z\sigma_1 &= Z \\ X\sigma_2 &= X & Y\sigma_2 &= Y & Z\sigma_2 &= Za \\ X\sigma_3 &= XZ \# Y \# & Y\sigma_3 &= 1 & Z\sigma_3 &= 1 \end{aligned}$$

Part VII

Functions from \mathbb{N} to \mathbb{N}

Siefkes,

Decidable extensions of monadic second order successor arithmetic (1970)

Regularity-preserving functions from \mathbb{N} to \mathbb{N}

As we have seen, the regularity-preserving functions are exactly the uniformly continuous functions from \mathbb{N} to \mathbb{N} for the profinite metric.

A function $f: \mathbb{N} \to \mathbb{N}$ is residually ultimately periodic (rup) if, for each monoid morphism h from \mathbb{N} to a finite monoid, the sequence h(f(n)) is ultimately periodic.

Proposition

A function $f : \mathbb{N} \to \mathbb{N}$ is uniformly continuous iff it is residually ultimately periodic.

Ultimately periodic functions

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic if there exists $t \ge 0$ and p > 0 such that, for all $n \ge t$, f(n+p) = f(n). For instance, the sequence $1, 4, 0, 2, 8, 1, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, \ldots$

is ultimately periodic.

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo n if the function $f \mod n$ is ultimately periodic. It is cyclically ultimately periodic (cup) if it is ultimately periodic modulo n for all n > 0.

Regularity-preserving functions from \mathbb{N} to \mathbb{N}

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo n iff for $0 \leq k < n$, the set $f^{-1}(k + n\mathbb{N})$ is regular.

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function $f : \mathbb{N} \to \mathbb{N}$ is regularity-preserving iff it is cyclically ultimately periodic and, for every $k \in \mathbb{N}$, the set $f^{-1}(k)$ is regular.

Regularity-preserving functions from $\mathbb N$ to $\mathbb N$

[Siefkes 1970]

- Every polynomial function
- $n \rightarrow 2^n$
- $n \rightarrow n!$

• $n \to 2^{2^2}$ (exponential stack of 2's of height n)

[Carton-Thomas 02]

- $n \rightarrow F_n$ (Fibonacci number)
- $n \rightarrow t_n$, where t_n is the prefix of length n of the Prouhet-Thue-Morse sequence.

Counterexamples [Siefkes 1970]

- n → ⌊√n⌋ is not cyclically ultimately periodic and hence not regularity-preserving.
- $n \rightarrow \binom{2n}{n}$ is not ultimately periodic modulo 4 and hence not regularity-preserving. Indeed

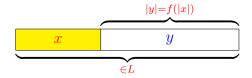
$$\binom{2n}{n} \mod 4 = \begin{cases} 2 & \text{if } n \text{ is a power of } 2, \\ 0 & \text{otherwise.} \end{cases}$$

Open problem?

• Is the function $n \rightarrow p_n$ regularity-preserving? (p_n is the *n*-th prime number).

Application to languages

Theorem (Seiferas, McNaughton 1976)
Let
$$f: \mathbb{N} \to \mathbb{N}$$
 be a rup function. If L is regular
[star-free], then the language
 $\{x \mid \text{there exists some } y \text{ of length } f(|x|)$
such that $xy \in L\}$
is also regular [star-free].



I I I F CNRS and Université de Paris Cité

Subword filtering problem (A. B. Matos)

Let $f : \mathbb{N} \to \mathbb{N}$ be a strictly increasing function. Filtering a word $u = a_0 a_1 \cdots a_n$ through f consists in just keeping the letters a_i such that i is in the range of f.

If L is regular, is the set of words of L filtered by f always regular?

Theorem (Berstel, Boasson, Carton, Petazzoni, P. (2006)) This happens iff the function Δf defined by $\Delta f(n) = f(n+1) - f(n)$ is regularity-preserving.

🛆 🛛 🖡 🖡 CNRS and Université de Paris Cité

Connections with logic

A function $f : \mathbb{N} \to \mathbb{N}$ is effectively regularitypreserving if, for each given regular subset of \mathbb{N} , $f^{-1}(R)$ is regular and effectively computable.

Recall that $\Delta f(n) = f(n+1) - f(n)$.

Theorem (Carton-Thomas 02)

Let χ_P be the characteristic function of a predicate $P \subseteq \mathbb{N}$. If $\Delta \chi_P$ is effectively regularity-preserving, then the monadic second order theory $\mathrm{MTh}(\mathbb{N}, <, P)$ is decidable.

Closure properties of cup functions

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02) Let $f, g: \mathbb{N} \to \mathbb{N}$ be cyclically ultimately periodic functions. Then so are the following functions: (1) $g \circ f, f + g, fg, f^g$, and f - g provided that $f \ge g$ and $\lim_{n \to \infty} (f - g)(n) = +\infty$, (2) (generalised sum) $n \to \sum_{0 \le i \le g(n)} f(i)$, (3) (generalised product) $n \to \prod_{0 \le i \le g(n)} f(i)$.

🛆 🛛 🖡 🖡 CNRS and Université de Paris Cité

Closure properties of rup functions

Theorem

Let f and g be rup functions. Then so are $f \circ g$, f + g, fg, f^g , $\sum_{0 \leq i \leq g(n)} f(i)$, $\prod_{0 \leq i \leq g(n)} f(i)$.

Let $f : \mathbb{N} \to \{0, 1\}$ be a non-recursive function. Then the function $n \to (\sum_{0 \leq i \leq n} f(i))!$ is regularity-preserving but non-recursive.

Open question. Is it possible to describe the primitive recursive cup [rup] functions? One could try to use a recursion scheme similar to Siefkes' primitive recursion scheme for cup functions.

Siefkes' recursion scheme (1970)

Theorem

Let $q: \mathbb{N}^k \to \mathbb{N}$ and $h: \mathbb{N}^{k+2} \to \mathbb{N}$ be cyclically ultimately periodic functions satisfying three technical conditions. Then the function f defined from g and h by primitive recursion, i.e. $f(0, x_1, \ldots, x_k) = q(x_1, \ldots, x_k),$ $f(n+1, x_1, \ldots, x_k) =$ $h(n, x_1, \ldots, x_k, f(n, x_1, \ldots, x_k))$ is cyclically ultimately periodic.

🛆 🛛 🖡 🖡 CNRS and Université de Paris Cité

The three technical conditions

- (1) h is cyclically ultimately periodic in x_{k+2} of decreasing period,
- (2) g is essentially increasing in x_k ,
- (3) for all $x \in \mathbb{N}^{k+2}$, $x_{k+2} < h(x_1, \dots, x_{k+2})$.
- A function f is essentially increasing in x_j iff, for all $z \in \mathbb{N}$, there exists $y \in \mathbb{N}$ such that for all $x \in \mathbb{N}^n$, $y \leq x_j$ implies $z \leq f(x_1, \ldots, x_n)$.
- A function f is c.u.p. of decreasing period in x_j iff, for all p, the period of the function $f \mod p$ in x_j is $\leq p$.