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Part V

Logic

ϕ = ∃x ax

L = A∗aA∗

ϕ = ∃x ∃y ∃z x < y ∧ y < z ∧ ax ∧ by ∧ cz

L = A∗aA∗bA∗cA∗

ϕ = ∃x (∀y ¬y < x ∧ ax)

L = aA∗
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Logic

For each letter a ∈ A, let a be a unary predicate
symbol, where ax is interpreted as “the letter in
position x is an a”.

To each word u ∈ A+ is associated a structure

Mu = ({1, 2, . . . , |u|},S, <, (a)a∈A)

where < is interpreted as the usual order on
{1, 2, . . . , |u|} and S is the successor relation.

The language defined by a sentence ϕ is

L(ϕ) = {u ∈ A∗ | Mu satisfies ϕ}
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Logical fragments

Let FO[<], MSO[<] denote the set of first-order
and monadic second-order formulas of signature
{<, (a)a∈A}, respectively.

Let MSO[S] and SO[S] denote the set of monadic
second-order and second-order formulas of signature
{S, (a)a∈A}, respectively.
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Logic on words

Theorem (Buchi 1960, Elgot 1961, Trakhtenbrot 1973)

MSO[S] captures the class of regular languages.

Theorem (McNaughton 1971)

FO[<] captures the class of star-free languages.

In general, second order logic captures some
non-regular languages, but two successive results led
to a complete characterisation of the syntactic
fragments that only capture regular languages.
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Existential second order

Existential second order (ESO or Σ1
1)

For example, ESO(∃∗∀∃∗) is the class of all formulas

∃R1 · · · ∃Rn ∃x1 · · · ∃xp ∀y ∃z1 · · · ∃zq
ϕ(R1, . . . , Rn, x1, . . . , xp, y, z1, . . . , zq)

where ϕ is quantifier-free and R1, . . . , Rn are
relation symbols.



ESO-prefix classes (pictures from EGS 2010)

Eiter, Gottlob, Gurevich 00 and Eiter, Gottlob, Schwentick 02
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Beyond existential second-order

For instance Σ1
2(∀∃) corresponds to formulas

∃R1 · · · ∃Rn ∀S1 · · · ∀Sm ∀x ∃y
ϕ(R1, . . . , Rn, S1, . . . , Sm, x, y)

where R1, . . . , Rn, S1, . . . , Sm are relations and ϕ is
quantifier-free.
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Linear temporal logic (LTL)

The vocabulary consists of an atomic proposition pa
for each letter a, the usual connectives ∨, ∧ and ¬
and the temporal operators X (next), F
(eventually) and U (until).

Theorem (Kamp 1968)
A language is star-free iff it is LTL-definable.
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Rabin’s tree theorem

For each letter a, let Sa be a binary relation symbol,
interpreted on A∗ as follows: Sa(u, v) iff v = ua.

Theorem (Rabin 1969)
A language is regular iff it is definable in
MSO[(Sa)a∈A].
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Part VI

Transductions and profinite topology

Let M and N be monoids. A transduction
τ : M → N is a relation on M and N , viewed as a
function from M to P(N).

The inverse transduction τ−1 : N → M is defined
by τ−1(Q) = {m ∈ M | τ(m) ∩Q 6= ∅}.
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Recognizable subsets of a monoid

Let L be a subset of a monoid M . A monoid N

recognizes L if there exists a surjective morphism h :
M → N such that such that L = h−1(h(L)).

Let Rec(M) denote the set of recognizable subsets
of M (= recognized by some finite monoid.).

For A∗, recognizable = regular = rational.
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Transductions preserving recognizability

A function [transduction] f : M → N preserves
recognizability if, for each recognizable subset R of
N , f−1(R) is recognizable.

Proposition (Pin-Silva 2005)
The function g : A∗ × N → A∗ defined by
g(x, n) = xn preserves recognizability.

Let τn : A
∗ → (A∗)n be defined by

τn(u) = {(u1, . . . , un) | u1 · · ·un = u}
Then both τn and τ−1

n preserve recognizability.



CNRS and Université de Paris Cité

Residually finite monoids

A monoid N separates two elements x, y of a
monoid M if there exists a monoid morphism
h : M → N such that h(x) 6= h(y).

A monoid M is residually finite if any pair of distinct
elements of M can be separated by a finite monoid.

Let M be the class of monoids that are finitely
generated and residually finite. This class includes
finite monoids, free monoids, free groups, trace
monoids and their products.
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Profinite metric on a monoid M of M

Let, for each (u, v) ∈ M 2,

r(u, v) = min
{
Card(N) N separates u and v}

d(u, v) = 2−r(u,v)

with the usual conventions min ∅ = +∞ and 2−∞ = 0.

Then

d(u, w) 6 max(d(u, v), d(v, w)) (ultrametric)

d(uw, vw) 6 d(u, v)

d(wu,wv) 6 d(u, v)

Then (M, d) is a metric monoid.
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Uniform continuity

Proposition

Let M,N ∈ M. A function f : M → N is
preserves recognizability if and only if it is uniformly
continuous for the profinite metrics.
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Uniform continuity

Proposition

Let M,N ∈ M. A function f : M → N is
preserves recognizability if and only if it is uniformly
continuous for the profinite metrics.

What about transductions τ : M → N?
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Hausdorff metric

The completion of the metric monoid (M, d) is a

compact metric monoid M̂ . The set K(M̂) of

compact subsets of M̂ is also a compact monoid for
the Hausdorff metric.

The Hausdorff metric on K(M̂) is defined as

follows. For K,K ′ ∈ K(M̂), let

δ(K,K ′) = sup
x∈K

d(x,K ′)

h(K,K ′) = max(δ(K,K ′), δ(K ′, K))

+ special definition if K or K ′ is empty
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The case of transductions

Let M and N be monoids of M and let
τ : M → N be a transduction.

Define a map τ̂ : M → K(N̂) by setting, for each

x ∈ M , τ̂(x) = τ(x).

Theorem (Pin-Silva 2005)
The transduction τ is preserves recognizability iff τ̂

is uniformly continuous for the Hausdorff metric.
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An exercise

If L is regular, then

K = {u ∈ A∗ | u|u| ∈ L}
is also regular.

Proof. Indeed, K = h−1(L), where h(u) = u|u|.
Now h = g ◦ f

u
f−→ (u, |u|) g−→ u|u|

and f and g are both uniformly continuous. Thus
K is regular.
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Matrix representations

1a | a b | b

µ(a) = a µ(b) = b µ(u) = u

f1(u) = uu f1(u) = (µ(u))2

f2(u) = uau2 f2(u) = µ(u)aµ(u)2

τ1(u) = u∗ τ1(u) =
∑

n>0

µ(u)n

τ2(u) =
⋃

p prime

up τ2(u) =
∑

p prime

µ(u)p
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f (u) = a|u|ab|u|b

1 2

a | a

b | 1

a | 1

b | b

µ(a) =
(
a 0
0 1

)
µ(b) =

(
1 0
0 b

)
µ(u) =

(
a|u|a 0
0 b|u|b

)

f(u) = µ1,1(u)µ2,2(u)
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f (u) = Last(u)u

1 23

a | a, b | b

a | 1 b | 1

a | a, b | b

a b

µ(a) =

(
a 0 1
0 a 0
0 0 0

)
µ(b) =

(
b 0 0
0 b 1
0 0 0

)

µ(ua) =

(
ua 0 u
0 ua 0
0 0 0

)
µ(ub) =

(
ub 0 0
0 ub u
0 0 0

)

f(u) = aµ1,3(u) + bµ2,3(u)
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Matrix representations

A transduction τ : A∗ → M admits a matrix
representation (S, µ) of degree n if there exist a
monoid morphism µ : A∗ → P(M)n×n and a
possibly infinite union of products S involving
arbitrary subsets of M and n2 variables
X1,1, . . . , Xn,n, such that, for all u ∈ A∗,

τ(u) = S[µ1,1(u), . . . , µn,n(u)].

Example for n = 2: Let (Pk)k>0 be subsets of M .

S =
⋃

k∈N
P0X

k
1,1PkX2,1X

k
1,1X2,2Pk!X1,1P2k



CNRS and Université de Paris Cité

Matrix representation of transducers

Theorem (Pin-Sakarovitch 1983)

Let (S, µ) be a matrix representation of degree n of
a transduction τ : A∗ → M . Let P be a subset of
M recognised by a morphism η : M → N . Then the
language τ−1(P ) is recognised by the submonoid
ηµ(A∗) of the monoid of matrices P(N)n×n.

Corollary
Every transduction having a matrix representation
preserves recognizability.
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An exercise

Let L be a regular language and T ⊆ N
2. Then

LT = {u ∈ A∗ | there exist x, y and (p, q) ∈ T

such that |x| = p|u|, |y| = q|u| and xuy ∈ L}
is regular.

Observe that LT = τ−1(L) where the transduction
τ(u) =

⋃
(p,q)∈T A

p|u|uAq|u| admits the matrix

representation (S, µ), with

µ(u) =



A|u| ∅ ∅
∅ u ∅
∅ ∅ A|u|


 and S =

⋃

(p,q)∈T
X

p
1,1X2,2X

q
3,3
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Some other examples

• Intersection: L1 ∩ L2 = τ−1(L1 × L2) where
τ : A∗ → A∗ × A∗ is given by τ(u) = u× u.

• Concatenation product: L1L2 = τ−1(L1 × L2)
where τ(u) = {(u1, u2) | u1u2 = u}.
µ(u) =

(
(u, 1) {(u1, u2) | u = u1u2}
∅ (1, u)

)

(Schützenberger product)

• Shuffle: L1 xxyL2 = τ−1(L1 × L2) where
τ(u) = {(u1, u2) | u ∈ u1 xxyu2}. Here µ = τ .

• Union, quotients, morphisms, inverses of
morphisms, and many others
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Standard exercises

If L is regular, then so are
√
L = {u | uu ∈ L} and

1
2(L) = {first halves of words in L}. If L is

star-free, then so is
√
L.

Proof.
√
L = τ−1(L) where τ(u) = u2. Taking

µ(u) = u shows that if a monoid recognizes L, then
it also recognizes

√
L.

1
2(L) = τ−1(L) where τ(u) = uA|u|. Take

µ(u) =

(
u ∅
∅ A|u|

)
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Streaming string transducers

A substitution σ : A∗ → B∗ is a monoid morphism
from A∗ to P(B∗).

A streaming string transducer is a sequential
transducer whose outputs are substitutions.

Theorem
Streaming string transducers preserve
recognizability.
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An example of streaming string transducer

The function f(ancbp) = apbpn can be realized by
the following streaming string transducer:

1 2

a | σ1

c | Id

b | σ2

Y σ

where A = {a, b, c}, B = A ∪ {X, Y } and
σ, σ1, σ2 : B

∗ → B∗ are substitutions defined by

Xσ1 = X Y σ1 = Y X dσ1 = d for d ∈ A

Xσ2 = Xb Y σ2 = Y a dσ2 = d for d ∈ A

Xσ = 1 Y σ = 1 dσ = d for d ∈ A
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Streaming string transducers at work

The function f(ancbp) = apbpn can be realized by
the following streaming string transducer:

1 2

a | σ1

c | Id

b | σ2

Y σ

τ(ancbp) = Y σn
1σ

p
2σ = (Y Xn)σp

2σ = ((Y σ
p
2)(Xσ

p
2)

n)σ

= ((Y ap)(Xbp)n)σ = apbpn

Xσ1 = X Y σ1 = Y X dσ1 = d for d ∈ A

Xσ2 = Xb Y σ2 = Y a dσ2 = d for d ∈ A

Xσ = 1 Y σ = 1 dσ = d for d ∈ A
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Matrix representation of a sst

The function f(ancbp) = apbpn can be realized by
the following streaming string transducer:

1 2

a | σ1

c | Id

b | σ2

Y σ

Let M be the monoid of all substitutions from B∗

into itself under composition. Then
µ : A∗ → (M ∪ {0})2×2 is the morphism defined by

µ(a) =
(
σ1 0
0 0

)
µ(b) =

(
0 0
0 σ2

)
µ(c) =

(
0 Id
0 0

)
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Effective computation

Let R ∈ Rec(B∗) and let η : B∗ → N be a monoid
morphism recognizing R (N finite).

One can define a right action of M on the monoid
P(N)B, which induces a monoid morphism π from
M to the monoid T of all transformations on
P(N)B.

Proposition (Pin, Reynier, Villevallois, 2018)

The language τ−1(R) is recognized by the monoid
morphism π ◦ µ : A∗ → (T ∪ {0})Q×Q.
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An other example of streaming string transducer

f(u0#u1#u2#u3#u4#u5# · · ·#un) =
u1#u0#u3#u2#u5#u4# · · ·#un is realized by the sst:

1 2

a | σ1

# | Id

# | σ3

a | σ2

where A = {a, b,#}, B = A ∪ {X, Y, Z} and
σ, σ1, σ2 : B

∗ → B∗ are substitutions defined by

Xσ1 = X Y σ1 = Y a Zσ1 = Z

Xσ2 = X Y σ2 = Y Zσ2 = Za

Xσ3 = XZ#Y# Y σ3 = 1 Zσ3 = 1
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Part VII

Functions from N to N

Siefkes,
Decidable extensions of monadic
second order successor arithmetic (1970)
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Regularity-preserving functions from N to N

As we have seen, the regularity-preserving functions
are exactly the uniformly continuous functions from
N to N for the profinite metric.

A function f : N → N is residually ultimately
periodic (rup) if, for each monoid morphism h from
N to a finite monoid, the sequence h(f(n)) is
ultimately periodic.

Proposition
A function f : N → N is uniformly continuous iff it
is residually ultimately periodic.
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Ultimately periodic functions

A function f : N → N is ultimately periodic if there
exists t > 0 and p > 0 such that, for all n > t,
f(n+ p) = f(n). For instance, the sequence

1, 4, 0, 2, 8, 1, 2, 3, 5︸ ︷︷ ︸, 2, 3, 5︸ ︷︷ ︸, 2, 3, 5︸ ︷︷ ︸, 2, 3, 5︸ ︷︷ ︸, . . .
is ultimately periodic.

A function f : N → N is ultimately periodic modulo
n if the function f mod n is ultimately periodic. It
is cyclically ultimately periodic (cup) if it is
ultimately periodic modulo n for all n > 0.
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Regularity-preserving functions from N to N

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function f : N → N is ultimately periodic modulo
n iff for 0 6 k < n, the set f−1(k + nN) is regular.

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function f : N → N is regularity-preserving iff it is
cyclically ultimately periodic and, for every k ∈ N,
the set f−1(k) is regular.
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Regularity-preserving functions from N to N

[Siefkes 1970]

• Every polynomial function

• n → 2n

• n → n!

• n → 22
2
...2

(exponential stack of 2’s of height n)

[Carton-Thomas 02]

• n → Fn (Fibonacci number)

• n → tn, where tn is the prefix of length n of
the Prouhet-Thue-Morse sequence.
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Counterexamples [Siefkes 1970]

• n → ⌊√n⌋ is not cyclically ultimately periodic
and hence not regularity-preserving.

• n →
(
2n
n

)
is not ultimately periodic modulo 4

and hence not regularity-preserving. Indeed
(
2n

n

)
mod 4 =

{
2 if n is a power of 2,

0 otherwise.

Open problem?

• Is the function n → pn regularity-preserving?
(pn is the n-th prime number).
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Application to languages

Theorem (Seiferas, McNaughton 1976)
Let f : N → N be a rup function. If L is regular
[star-free], then the language
{
x | there exists some y of length f(|x|)

such that xy ∈ L
}

is also regular [star-free].

|y|=f(|x|)︷ ︸︸ ︷
x y

︸ ︷︷ ︸
∈L
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Subword filtering problem (A. B. Matos)

Let f : N → N be a strictly increasing function.
Filtering a word u = a0a1 · · · an through f consists
in just keeping the letters ai such that i is in the
range of f .

If L is regular, is the set of words of L filtered by f

always regular?

Theorem (Berstel, Boasson, Carton, Petazzoni, P. (2006))
This happens iff the function ∆f defined by
∆f(n) = f(n+ 1)− f(n) is regularity-preserving.
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Connections with logic

A function f : N → N is effectively regularity-
preserving if, for each given regular subset of N,
f−1(R) is regular and effectively computable.

Recall that ∆f(n) = f(n+ 1)− f(n).

Theorem (Carton-Thomas 02)
Let χP be the characteristic function of a predicate
P ⊆ N. If ∆χP is effectively regularity-preserving,
then the monadic second order theory
MTh(N, <, P ) is decidable.
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Closure properties of cup functions

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let f, g : N → N be cyclically ultimately periodic
functions. Then so are the following functions:

(1) g ◦ f , f + g, fg, f g, and f − g provided that
f > g and lim

n→∞
(f − g)(n) = +∞,

(2) (generalised sum) n →∑
06i6g(n) f(i),

(3) (generalised product) n →∏
06i6g(n) f(i).
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Closure properties of rup functions

Theorem
Let f and g be rup functions. Then so are f ◦ g,
f + g, fg, f g,

∑
06i6g(n) f(i),

∏
06i6g(n) f(i).

Let f : N → {0, 1} be a non-recursive function.
Then the function n → (

∑
06i6n f(i))! is

regularity-preserving but non-recursive.

Open question. Is it possible to describe the
primitive recursive cup [rup] functions? One could
try to use a recursion scheme similar to Siefkes’
primitive recursion scheme for cup functions.
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Siefkes’ recursion scheme (1970)

Theorem
Let g : Nk → N and h : Nk+2 → N be cyclically
ultimately periodic functions satisfying three
technical conditions. Then the function f defined
from g and h by primitive recursion, i.e.

f(0, x1, . . . , xk) = g(x1, . . . , xk),

f(n+ 1, x1, . . . , xk) =

h(n, x1, . . . , xk, f(n, x1, . . . , xk))

is cyclically ultimately periodic.
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The three technical conditions

(1) h is cyclically ultimately periodic in xk+2 of
decreasing period,

(2) g is essentially increasing in xk,

(3) for all x ∈ N
k+2, xk+2 < h(x1, . . . , xk+2).

A function f is essentially increasing in xj iff, for all
z ∈ N, there exists y ∈ N such that for all x ∈ N

n,
y 6 xj implies z 6 f(x1, . . . , xn).

A function f is c.u.p. of decreasing period in xj iff,
for all p, the period of the function f mod p in xj is
6 p.
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