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Part V
Logic
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Logic

For each letter o € A, let a be a unary predicate
symbol, where ax is interpreted as “the letter in
position x is an a".

To each word v € A" is associated a structure
Mu — ({13 27 ceey ’U”}n 87 <7 (a)aeA)

where < is interpreted as the usual order on

{1,2,...,|ul} and S is the successor relation.

The language defined by a sentence ¢ is
L(p) =4{u € A" | M, satisfies ¢}
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Logical fragments

Let FO[<], MSO|<] denote the set of first-order
and monadic second-order formulas of signature

{<,(a)4ea}, respectively.

Let MISO|S] and SO[S] denote the set of monadic
second-order and second-order formulas of signature

{S,(a)qeca}, respectively.
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Logic on words

Theorem (Buchi 1960, Elgot 1961, Trakhtenbrot 1973)
MSO|S] captures the class of regular languages.

Theorem (McNaughton 1971)

FO|<]| captures the class of star-free languages.

In general, second order logic captures some
non-regular languages, but two successive results led
to a complete characterisation of the syntactic
fragments that only capture regular languages.
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Existential second order

Existential second order (ESO or 3:})
For example, ESO(3*V3*) is the class of all formulas
dRy - -- 3R, Jxy -+ - Jxy, Yy 21 - - - dzg
O(Ry, ... Ry, T, Yy 21, oy 2g)

where ¢ is quantifier-free and Ry, ..., R, are
relation symbols.
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ESO-prefix classes (pictures from EGS 2010)

Eiter, Gottlob, Gurevich 00 and Eiter, Gottlob, Schwentick 02

_ NP-tailored )
T ESO(WH) o

ESO(YWY),/£SO(3*VI* N\ ESO(VAY) ~ESO(I*WN\ESO(W3I)
regular-tailored

’/E'éb_(ia?x‘/j*\\@s»oi(vv),,/”’/

- msowa)

FO expressible (FO(3*V))

[ regular ] NP-hard



Beyond existential second-order

Non-regular classes

3 (W) AZ2 (3N AZLIW)AZL(WIH)AZL(VIV) A Z2(FV) A Z5(V3)
Zp(v) ¥ Z3(W) ML (FVIVEI W)Y Z3(vE) VY Zi(3)

Regular classes

Fig. 2. Maximal regular and minimal non-regular SO prefix classes on strings
For instance Y}(V) corresponds to formulas

dRy---dR, VS1---VS,, Va dy
©(Ry, ..., Ry, S1,...,Sm,x,y)

where Ry,..., R,,S1,...,5,, are relations and ¢ is
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Linear temporal logic (LTL)

The vocabulary consists of an atomic proposition p,
for each letter a, the usual connectives \/, A and —
and the temporal operators X (next), F
(eventually) and U (until).

Theorem (Kamp 1968)
A language is star-free iff it is LTL-definable.
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Rabin’s tree theorem

For each letter a, let S, be a binary relation symbol,
interpreted on A* as follows: S, (u,v) iff v = ua.

Theorem (Rabin 1969)

A language is regular iff it is definable in
MSO[(S,)acal-
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Part VI

Transductions and profinite topology

Let M and N be monoids. A transduction
7: M — N is a relation on M and N, viewed as a

function from M to P(N).

The inverse transduction 7 ': N — M is defined

by 771 Q) ={m e M | 7(m)NQ # 0}.
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Recognizable subsets of a monoid

Let L be a subset of a monoid M. A monoid N

recognizes L if there exists a surjective morphism £ :
M — N such that such that L = h~'(h(L)).

Let Rec(M) denote the set of recognizable subsets
of M (= recognized by some finite monoid.).

For A*, recognizable = regular = rational.
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Transductions preserving recognizability

A function [transduction] f : M — N preserves
recognizability if, for each recognizable subset R of
N, f7Y(R) is recognizable.

Proposition (Pin-Silva 2005)
The function g: A* x N — A* defined by
g(x,n) = x" preserves recognizability.

Let 7,,: A* — (A")" be defined by

To(u) = {(ug, ..., up) | uyg - u, = u}

Then both 7,, and 7, preserve recognizability.
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Residually finite monoids

A monoid N separates two elements x, y of a

monoid M if there exists a monoid morphism
h: M — N such that h(x) # h(y).

A monoid M is residually finite if any pair of distinct
elements of M/ can be separated by a finite monoid.

Let M be the class of monoids that are finitely
generated and residually finite. This class includes
finite monoids, free monoids, free groups, trace
monoids and their products.
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Profinite metric on a monoid M of M

Let, for each (u,v) € M?,
r(u,v) = min{Card(N) | N separates u and v}
d(u,v) = 277
with the usual conventions min () = +o00 and 27> = 0.
Then
max(d(u,v),d(v,w)) (ultrametric)
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Uniform continuity

Proposition

Let M, N € M. A function f : M — N is
preserves recognizability if and only if it is uniformly
continuous for the profinite metrics.
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Uniform continuity

Proposition

Let M, N € M. A function f : M — N is
preserves recognizability if and only if it is uniformly
continuous for the profinite metrics.

What about transductions 7 : M — N7
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Hausdorff metric

The completion of the metric monoid (1, d) is a
compact metric monoid M. The set /C(]V[) of

compact subsets of M is also a compact monoid for
the Hausdorff metric.

The Hausdorff metric on /C(]\?) is defined as
follows. For K, K’ € IC(M), let

O(K,K'") =supd(z, K')
reK

h(K,K") = max(§(K, K'),0(K', K))
+ special definition if K or K’ is empty
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The case of transductions

Let M and N be monoids of M and let
7: M — N be a transduction.

Definea map 7 : M — IC(N ) by setting, for each
ze M, 7(z) =1(z).

Theorem (Pin-Silva 2005)

The transduction T is preserves recognizability iff T
is uniformly continuous for the Hausdorff metric.
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An exercise

If L is regular, then
KZ{UEA*‘UMEL}
is also regular.
Proof. Indeed, K = h~'(L), where h(u) = ul".
Now h = go f
uds (u, ) L ul

and f and g are both uniformly continuous. Thus
K is regular.
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Matrix representations

mi(u) =) pu(u)"

n=0

raw) = 3 ()’

p prime
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b|1 b|b

n@ =5 1) w0 =8 ww=("" %)
fu) = pai(w)po2(u)
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alab|b alab|b
B W o)
a 0 1 b 00
o= (§54) o=
ua 0 wu ub 0 0
o= ({5 8) o= (343)
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Matrix representations

A transduction 7: A* — M admits a matrix
representation (5, ;1) of degree n if there exist a
monoid morphism pi: A* — P(M)"*" and a
possibly infinite union of products S involving
arbitrary subsets of M and n? variables
X11,..., X, such that, for all u € A*,

T(u) = Sl a(w), ..., pinn(u)].
Example for n = 2: Let (P})x~0 be subsets of M.

S = RXJ PXo1 XF X0 5P X1 Poy
keN
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Matrix representation of transducers

Theorem (Pin-Sakarovitch 1983)

Let (S, 1) be a matrix representation of degree n of
a transduction 7: A* — M. Let P be a subset of
M recognised by a morphism n: M — N. Then the
language 7~ '(P) is recognised by the submonoid
nu(A*) of the monoid of matrices P(N)"*".

Corollary

Every transduction having a matrix representation
preserves recognizability.
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An exercise

Let L be a regular language and 7" C N2. Then

Ly ={u € A" | there exist z, y and (p,q) € T
y| = q|u| and zuy € L}

such that |z| = plu

is regular.

Observe that L7 = 7 (L) where the transduction
T(u) = Upger APty A9l admits the matrix
representation (5, 1), with
Al g
pu)y=1{ 0 w O | and S = U X7 1X59X5 5
/) A|u| (p,q) €T
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Some other examples

e Intersection: LN Ly =7 1(L; x Ly) where
T A" — A" x A% is given by T(u) = u X u.

e Concatenation product: LiLy =7 (L1 x L»)
where 7(u) = {(u1, us) | ugus = u}.

u, 1 Ui, Ug) | U = U U
i) = (1) () 0 = )
(Schutzenberger product)
e Shuffle: Ly w Ly = ’7'_1([4 X LQ) where
7(u) = {(u1,u2) | u € uywius}. Here = 7.
e Union, quotients, morphisms, inverses of
morphisms, and many others
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Standard exercises

If L is regular, then so are v/L = {u | uu € L} and
3(L) = {first halves of words in L}. If L is

star-free, then so is /L.

Proof. /L = 7 '(L) where 7(u) = u?. Taking
() = u shows that if a monoid recognizes L, then
it also recognizes /L.

(L) = 77'(L) where 7(u) = uAl Take

)

l\.'>|>—‘
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Streaming string transducers

A substitution o : A* — B* is a monoid morphism
from A* to P(B*).

A streaming string transducer is a sequential
transducer whose outputs are substitutions.

Theorem

Streaming string transducers preserve
recognizability.
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An example of streaming string transducer

The function f(a"cb?’) = a’bP" can be realized by
the following streaming string transducer:

al o b| o

where A = {a,b,c}, B=AU{X,Y} and

o,01,09 . B* — B* are substitutions defined by
XO'1:X YO'1:YX dO‘lzd'FOFdGA
Xoy=Xb Yo,=Ya doy, =d ford e A
Xo=1 Yo=1 do=dforde A
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Streaming string transducers at work

The function f(a"cb?’) = a’bP" can be realized by
the following streaming string transducer:

al o b| o

T(a"ch?) =Yoloho = (YX")oho = (Yob)(Xah)")o
— ((Yap)(Xbp)n)O_ — gPpPr

XO'1:X YO'1:YX dalzdfordEA

XUQZXb YUQZYG, d(fQ:dfordeA

Xo=1 Yo=1 do=dforde A
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Matrix representation of a sst

The function f(a"cb?’) = a’bP" can be realized by
the following streaming string transducer:

al o b| o
Y C|[d o

Let M be the monoid of all substitutions from B*

into itself under composition. Then
p: A* — (M U{0})**% is the morphism defined by

)= (5 8) w0 = 3) wa=(5)
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Effective computation

Let R € Rec(B*) and let  : B* — N be a monoid
morphism recognizing R (N finite).

One can define a right action of A/ on the monoid
P(N)P, which induces a monoid morphism 7 from
M to the monoid 7' of all transformations on
P(N)P.

Proposition (Pin, Reynier, Villevallois, 2018)

The language 7' (R) is recognized by the monoid
morphism oy : A* — (T'U{0})¥*9,
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An other example of streaming string transducer

[ (uotur FusFFusdrusdFust - - - #uy) =
Uy FupHFusHFusHFus#HusF - - - #u,, is realized by the sst:

a|01 Cl|0'2

# | 1d

# | 03
where A = {a,b,#}, B=AU{X,Y,Z} and
o,01,09 . B* — B* are substitutions defined by
Xop =X Yo, =Ya Jor =7
Xos =X Yo, =Y Loy = Za
Xo3 = XZH#Y # Yoz =1 Zos =1
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Part VII

Functions from N to N

r

Siefkes,
Decidable extensions of monadic
second order successor arithmetic (1970)

L17
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Regularity-preserving functions from N to N

As we have seen, the regularity-preserving functions
are exactly the uniformly continuous functions from
N to N for the profinite metric.

A function f: N — N is residually ultimately
periodic (rup) if, for each monoid morphism / from
N to a finite monoid, the sequence i (f(n)) is
ultimately periodic.

Proposition

A function f: N — N is uniformly continuous iff it
is residually ultimately periodic.
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Ultimately periodic functions

A function f : N — N is ultimately periodic if there
exists t > 0 and p > 0 such that, for all n > ¢,
f(n+p)= f(n). For instance, the sequence

1,4,0,2,8,1,2,3,5,2.3,5,2.3.5.2,3.5, . ..
N N N —

is ultimately periodic.
A function f : N — N is ultimately periodic modulo
n if the function f mod n is ultimately periodic. It

is cyclically ultimately periodic (cup) if it is
ultimately periodic modulo n for all n > 0.
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Regularity-preserving functions from N to N

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function f : N — N s ultimately periodic modulo
n iff for 0 < k < n, the set f~*(k + nN) is regular.

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function f : N — N is regularity-preserving iff it is
cyclically ultimately periodic and, for every k € N,
the set f~1(k) is regular.
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Regularity-preserving functions from N to N

[Siefkes 1970]
e Every polynomial function
o n — 2"

e n—nl
.2

o n— 27 (exponential stack of 2's of height n)
[Carton-Thomas 02]

e n — F,, (Fibonacci number)

e n — t,, where 1, is the prefix of length n of
the Prouhet-Thue-Morse sequence.
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Counterexamples [Siefkes 1970]

e n — [/n] is not cyclically ultimately periodic
and hence not regularity-preserving.

°n — (2””) is not ultimately periodic modulo 4

and hence not regularity-preserving. Indeed
<2n> mod 4 — 2 ifnis ? power of 2,
n 0 otherwise.
Open problem?

e Is the function n — p,, regularity-preserving?
(p,, is the n-th prime number).
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Application to languages

Theorem (Seiferas, McNaughton 1976)

Let f: N — N be a rup function. If L is regular
[star-free], then the language

{x | there exists some y of length f(|x|)
such that xy € L}

is also regular [star-free].

ly|=/(|=[)

A
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Subword filtering problem (A. B. Matos)

Let f/ : N — N be a strictly increasing function.
Filtering a word u = agay - - - a,, through f consists
in just keeping the letters a; such that 7 is in the
range of f.

If L is regular, is the set of words of L filtered by f
always regular?

Theorem (Berstel, Boasson, Carton, Petazzoni, P. (2006))

This happens iff the function Af defined by
Af(n)= f(n+ 1) — f(n) is regularity-preserving.
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Connections with logic

A function f : N — N is effectively regularity-
preserving if, for each given regular subset of N,
F7YR) is regular and effectively computable.

Recall that Af(n) = f(n+ 1) — f(n).

Theorem (Carton-Thomas 02)

Let x p be the characteristic function of a predicate
P C N. If Axp is effectively regularity-preserving,
then the monadic second order theory

MTh(N, <, P) is decidable.
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Closure properties of cup functions

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let f,qg: N — N be cyclically ultimately periodic
functions. Then so are the following functions:

(1) go f, f+g, fg, [9 and [ — g provided that
£ g and T (f — g)(n) = +o0,
n—oo

(2) (generalised sum) n — > ;e f(0),
(3) (generalised product) n = [[oc;c i) f(0)-
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Closure properties of rup functions

Theorem
Let f and g be rup functions. Then so are f o g,

f + g, fgr fg, Zogigg(n) f@)' Hogigg(n) f(Z)

Let f : N — {0, 1} be a non-recursive function.
Then the function n — (>, f(i))!is
regularity-preserving but non-recursive.

Open question. Is it possible to describe the
primitive recursive cup [rup] functions? One could
try to use a recursion scheme similar to Siefkes'
primitive recursion scheme for cup functions.
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Siefkes’ recursion scheme (1970)

Theorem

Let g : N¥* = N and h : N¥*2 = N be cyclically
ultimately periodic functions satisfying three
technical conditions. Then the function [ defined
from g and h by primitive recursion, i.e.

f(oaxla"'axk‘) :g<l’1,...,l‘k),
fn+1,2q,...,21) =

h(n,z1, ..., x5 f(n, 21, ..., 2%))
is cyclically ultimately periodic.
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The three technical conditions

(1) h is cyclically ultimately periodic in 2,5 of
decreasing period,

(2) g is essentially increasing in zy,

(3) forall x € NF*2 1o < h(xy, ..., 7500).

A function f is essentially increasing in z; iff, for all
2z € N, there exists y € N such that for all z € N,
y < x;implies 2 < f(xq, ..., 2,).

A function [ is c.u.p. of decreasing period in z; iff,
for all p, the period of the function f mod p in z; is

2
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