Task 5 : Tools
Deliverable 1: Choice of the architecture and first
implementation of the core

April 2018

Involved DELTA members. Olivier Carton (IRIF), Olivier Gauwin (LaBRI),
Benjamin Monmege (Task leader, LIS), Pierre-Alain Reynier (LIS), Jean-
Marc Talbot (LIS), Didier Villevalois (LIS), Marc Zeitoun (LaBRI).

Recall of the context and motivation of the task. Several tools imple-
ment the Delta relationship between automata, logics and algebra into ap-
plicable software. As examples, we can cite the long list of libraries dealing
with the efficient treatment of regular expressions, in various programming
languages. Efficient pattern matching heavily relies on the use of finite state
automata.

With respect to the extensions considered in this project, several tools
have also been developed: Vaucanson |[LRGS04| (that lifts automata and
regular expressions in a wide context of transducers and weighted automata),
OpenFST [All+07] (that constructs, combines, optimises, and searches weighted
finite-state transducers), DReX |[ADR15| (that proposes an efficient evalua-
tion mechanism based on streaming string transducers).

Apart from tools, various logical specification languages have been pro-
posed to ease the process of writing the desired properties of a system. Start-
ing from linear temporal logic (LTL), which is widely used in the research
community and for industrial purposes, several extensions have been de-
signed to enhance the expressive power: Regular LTL [LS07} |[LS10|, propo-
sitional dynamic logic (PDL) |FL79| now widely known as the Propositional
Specification Language (PSL), governed by the 1.1 IEEE Standard 1850-
2005.

Such handy and powerful logical specification languages have been inves-
tigated only superficially for quantitative functions or transductions. Mean-
payoff automata expressions [Cha-+10] have been shown to enjoy nice closure

ANR DELTA: DEfis pour la Logique, les Transducteurs et les Automates

and decision properties, and other formalisms, with a more logical flavor,
have been proposed by members of the project consortium in more general
semirings (able to deal both with quantitative functions and transductions):
weighted monadic second order logic (WMSO) [DGO07|, weighted first-order
logic with transitive closure (WFOTC) |Bol+14; Bol+10|, hybrid weighted
expressions or hybrid weighted PDL [Mon13| that have been partially han-
dled in a tool called QuantiS.

The objective of the task is to build, and disseminate, a core tool for
modeling and reasoning about transductions and quantitative func-
tions, with frontends able to specify them with a variety of logical lan-
guages (or regular expressions). It must provide a toolbox of procedures,
extracted from other tasks of the project: test for equivalence, evaluation,
type-checking, simplification, translation from a formalism to another... The
main goal is to obtain a tool with a simple and scalable interface, yet with
a stable core.

Methodology. In the first 18 months of the project, we have worked to-
wards the objectives of this task as follows:

e around the task leader, several meetings have been organised to draw
the contour of the core data structures and algorithms that should be
preferably implemented at first;

e members of the project present at the first consortium meeting (from
17 to 20 October 2017, on Porquerolles Island) have thoroughly dis-
cussed the objectives (going from an internal tool for the DELTA con-
sortium or the nearby community only, up to a way to host other tools
of the community with designated benchmarks, going through a ped-
agogical tool for Master’s students) and ways to disseminate the tool
(independant tool, or library integrated in the SageMath open-source
mathematics software, extending the capabilities of the existing library
for finite state machines)).

Achievements. We have chosen to concentrate our first study to a relatively
restricted model of automata in the core. Considering the consortium, we
opted for a transducer/weighted automaton model, based on input/output
transitions: this temporarily rules out streaming string transducers or cost-
register automata, based on registers. We also concentrated ourselves to
classical models, without stacks (for which the consortium has nevertheless
worked in the last years [Dar+16; Fil+10|), and for which input structures
are words (and not trees or nested words). Therefore, the model of interest

http://www.lsv.fr/Software/quantis/
http://www.sagemath.org
http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/finite_state_machine.html
http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/finite_state_machine.html

ANR DELTA: DEfis pour la Logique, les Transducteurs et les Automates

which we focus on in our first implementation is one-way or two-way
finite state automata with output labels that are either words (to
model transducers) or elements of a semiring (like real numbers, integers,
matrices, or languages).

To choose the language in which we implement the core tool (this is a dif-
ferent question than the integration in SageMath as a library, that is possible
whatever language we choose), Didier Villevalois produced a first proof-of-
concept tool in the Scala) programming language: Scala is a language that
combines object-oriented and functional programming, and compiles itself to
target the Java Virtual Machine, JavaScript, or LLVM, allowing for building
a high-performance system with easy access to many ecosystems of libraries.
In the proof-of-concept tool, a data structure for storing automata mod-
els has been written in two forms: an explicit storage of the automaton
models (i.e. transitions are stored explicitly), and a symbolic storage where
transitions are computed on-the-fly when needed. Then, basic algorithms
have been implemented to evaluate the automaton (compute the output
associated with a given input word) or check the membership of a pair in-
put/output. The choice of a functional programming language has permitted
to produce relatively concise pieces of code, that seem easily extendable to
more general models later. Nevertheless, the compiling on a JVM makes the
language Scala a good choice to distribute easily the tool afterwards. We
plan to keep this choice in the future.

Next objectives. In the next months, we plan on quickly extending this
first version with several other needed algorithms like some ones performing
closure operations (concatenation, union, Kleene star, mirror...), to check
the emptiness of an automaton, or the equivalence of two automata (in re-
stricted cases to obtain decidability, and efficiency). We also need to define
particular subclasses of the general model of automata we designed, like
deterministic automata, one-way automata, which then allows one to imple-
ment known algorithms to check such subclasses (determinisation or one-way
definability, for instance), or to wonder about other simplification of models
(like minimisation of the number of states). A last short-term objective is
to study more carefully the integration of our tool as a SageMath library.
Afterwards, our main objective will be to allow for other specification
mechanisms to specify properties of transductions and weighted functions,
e.g. the use of logic and not only automata and regular expressions. Vari-
ous frontends will be developed for each logical formalisms: translation in-
between different formalisms will be provided as much as possible. The
DELTA postdoc involved in this task will have for mission to work on the

https://www.scala-lang.org

ANR DELTA: DEfis pour la Logique, les Transducteurs et les Automates

developments of algorithms in the frontend related to visibly pushdown trans-
ducers: we plan to hire him to start in the last trimester of 2018. The
software engineers team of LIS will also help us in the next months.

References

[ADR15] Rajeev Alur, Loris D’Antoni, and Mukund Raghothaman. “DReX:
A Declarative Language for Efficiently Evaluating Regular String
Transformations”. In: Proc. of POPL’15. ACM, 2015.

[All4+07] Cyril Allauzen et al. “OpenFst: A general and efficient weighted
finite-state transducer library”. In: Proc. of CIAA’07. Springer,
2007.

[Bol+10| Benedikt Bollig et al. “Pebble Weighted Automata and Transi-
tive Closure Logics”. In: Proc. of ICALP’10. Springer, 2010.

[Bol+14] Benedikt Bollig et al. “Pebble Weighted Automata and Weighted
Logics”. In: ACM Transactions on Computational Logic 15.2:15
(Apr. 2014).

[Cha+10] Krishnendu Chatterjee et al. “Mean-Payoff Automaton Expres-
sions”. In: Proc. of CONCUR’10. Springer, 2010.

[Dar+16| Luc Dartois et al. “Two-Way Visibly Pushdown Automata and
Transducers”. In: Proc of LICS’16. 2016.

[DGO7| Manfred Droste and Paul Gastin. “Weighted Automata and Weighted
Logics”. In: Theor. Comput. Sci. 380.1-2 (2007).

[Fil+10] Emmanuel Filiot et al. “Properties of Visibly Pushdown Trans-
ducers”. In: Proc. of MFCS’10. Springer, 2010.

[FL79] Michael J. Fischer and Richard E. Ladner. “Propositional Dy-
namic Logic of Regular Programs”. In: J. Comput. System Sci.
18 (1979).

[LRGS04] Sylvain Lombardy, Yann Régis-Gianas, and Jacques Sakarovitch.
“Introducing Vaucanson”. In: Theor. Comput. Sci. 328.1-2 (2004).

[LS07] Martin Leucker and César Sanchez. “Regular Linear Temporal
Logic”. In: Proc. of ICTAC’07. Springer, 2007.
[LS10] Martin Leucker and César Sanchez. “Regular Linear Temporal

Logic with Past”. In: Proceedings of VMCAI’10. Springer, 2010.

ANR DELTA: DEfis pour la Logique, les Transducteurs et les Automates

[Mon13|

Benjamin Monmege. “Specification and Verification of Quan-
titative Properties: Expressions, Logics, and Automata”. PhD
Thesis. Laboratoire Spécification et Vérification, ENS Cachan,
France, Oct. 2013.

