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Weighted expressions and automata
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Two-way automata

−→
` −→a ,

−→
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b
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←−
b

−→
a

` b a b b a

Infinite sum ?l
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Rationally additive semirings [Esik, Kuich, 02]

Axioms for
∑

:

∑
{a, b} = a + b∑

n∈N
xn exists for all x

x
∑

yi =
∑

(xyi ) (distributivity)

”associativity”

Examples :

(Q+ ∪ {∞},+,×)

Rational languages

Tropical semirings

Co-examples :

Q
Z
. . .

Not all families need to be summable.
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Objectives

Expressions for weighted 2w ?

Alur Expressions

E ,F := k | a | E + F | E .F | E ∗ | E←−. F | E
←−∗ | E � F | E ↪→ | E←↩

For non ambiguity only !
But all semirings.
The sum is useless (monoid).
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The main idea

Series : A∗ 7→ K

Sakarovitch : graded monoids

ϕ : M 7→ N such that:

ϕ(m) > 0 if m 6= 1M

ϕ(mn) = ϕ(m) + ϕ(n)

Examples

Free Monoid

Commutative Monoid

Co-examples

Free group

idempotent ( 6= 1M).
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Tile monoid of Dicky/Janin

• u • v • w •
↓

↓

Generated by :
↓ a

↓ , noted a, ↓
a ↓

, noted a
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Example

Tuile ` ab a

↓ ` a b a
↓

↓ ` a
↓

b

a ↓ b a
↓

` abb · aab a

` abb · bbaab a

↓ `
↓

a

↓ a b a
↓

` aa · ab a a a

` aaaaaa · abbaab a
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Properties for tiles

Given a tile :

Finite factors

Infinitely many representatives (but a regular language)

Captures families of 2-way runs

Delta Marseille Exp. and aut. over pre-rationals 11 / 24



Two-way automata

p q r s t
1
−→
` 1−→a , 1

−→
b 1−→a , 1

−→
b

2←−a , 2
←−
b

1
−→
a

p q r s t
1` 1a,1b 1a,1b

2a,2b

1a

`
(
(a + b)(a + b)2(a + b)

)∗
(a + b)(a + b)a

tile of the form ` u a
Functions over transitions

λ(p, k ,m, q) = m : label
π(p, k,m, q) = k : weight
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Weight in automata

run : [q, 1, a, r ], [r , 1, b, s], [s, 2, b, q], [q, 1, b, r ] = w

π(w) = 1.1.2.1 = 2 λ(w) = abbb = ab the tile!

RA accepting paths: language of transitions words, rational.

JAK(t) =
∑

w∈RA∩λ−1
A (t)

πA(w)

Valid ? Over rat. add.
∑
w∈L

ϕ(w) exists when L rational, ϕ morphism.
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Expressions

u 7→ (ũ)∗

`
(
(a + b)∗a a(aa + bb)∗` `

)∗
(a + b)∗a

Rational expressions ! (over tiles)

JE .F K(t) =
∑
t1t2=t

JEK(t1)JF K(t2)

Validity ?
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Result

K rationally additive, T the tile monoid.
Tiles of the form ` w a

Theorem

Two-way K-automaton
⇔

K-automaton over T
⇔

K-expression over T .

Extension of the boolean result (Dicky-Janin) to the weigthed case.

Delta Marseille Exp. and aut. over pre-rationals 15 / 24



Outline

1 Preliminary notions

2 Tiles

3 Monoids automata and expressions

4 Transformations
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Trees

a

b c

d d

↓↓

(>, a)

(l , b)

⊥

(r , c)

(l , d)

⊥

(r , d)

⊥

(>,A) ⊥⊥ (>,A)

(l ,A)(r ,A)

(l ,A) (r ,A)
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Pre-rationals

ϕ : G ∗ 7→

M

Such that ϕ−1(m) is rational ∀m :
with π morphism from G ∗ to K

∑
w∈ϕ−1(m)

π(w) exists !

All automata are valid.

Example

Free inverse monoid (Tiles, trees)

Graded monoids.

Idempotent generators.

Not the free group
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1 Preliminary notions

2 Tiles

3 Monoids automata and expressions
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Main result

K rationally additive, M pre-rational monoid.

Theorem

K-automaton over M ⇔ K-expression over M

Delta Marseille Exp. and aut. over pre-rationals 20 / 24



Path

A,K,M E ,K,M

A,Σ Unamb. E ,Σ

A,K,M E ,K,M

Unamb. A,Σ Unamb. E ,Σ
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Path

A,K,M E ,K,M

A,Σ Unamb. E ,Σ

A,K,M E ,K,M

Unamb. A,Σ Unamb. E ,Σ

Delta Marseille Exp. and aut. over pre-rationals 21 / 24



Automata to Expression

Automaton

→ Accepting
runs, λ, π.

→ Unambiguous
expression

→ Substitution
λ, π.

p

q

2a

3aab

p

q

[p, 2, a, q]

[p, 3, aab, p] [p, 3, aab, p]∗[p, 2, a, q] (3aab)∗2a

JAK(m)

=
∑

w∈λ−1(m)
∩RA

π(w)=
∑

w∈λ−1(m)

π(w)χE (w) = JEλπK(m)
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Expression to automata

From F , we want E unambiguous, λ, π such that:

JF K(m) = JEλπK(m)

F = (m∗)∗2 → E = ([m, 0]∗)∗[2, 1]

[1, 1] [1, 2] [2, 3]

[m, 0]

[1, 1]
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JF K(m) = JEλπK(m)

F = (m∗)∗2→ F ′ = (m∗1)∗1.2→ E = ([m, 0]∗[1, 1])∗[1, 2][2, 3]

1 1 2

m

1
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Conclusion

Extension of weighted Kleene theorem to other monoids.

Rational expressions for two-way!
for tree walking!
for graphs?

Trade-off between K and M
Easy construction, tedious proof

Thank you for your attention.
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Automates

p q r
aa 1 | a

1
2 | ε 3 | baa

b

↓

a b

↓

a b

↓

a

↓
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Monöıde inversif libre

A = {a|a ∈ A}.
. de (A ∪ A)∗ vers (A ∪ A)∗ inductively as:

ε = ε ua = a u ua = au.

Monöıde inversif libre

Quotient de (A ∪ A)∗ par

xxx = x xxx = x xxyy = yyxx

Delta Marseille Exp. and aut. over pre-rationals 2 / 5



Et si ça ne matche pas ?

Arbres de Munn.

↓
a

↓

a

↓ b

↓

b

↓
a b

↓

aab

a

↓
b a b

↓

abab
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Le lemme qui fait tout marcher.

E NA booléenne, K rat. add., M (pas nécessairement pré-rat). λ, π
morphismes.

Lemme

Eλ,π = E [∀a, a← λ(a)π(a)] valide

⇔

m ∈ M, F sous-expression de E :∑
λ(w)=m π(w)χF (w) existe.

JEλ,πK(m) =
∑

λ(w)=m

π(w)χE (w)
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Expression vers automate : exemple

a + a + 2b∗ → [a, 0] + [a, 1] + [2, 2][b, 3]∗[1, 4]

p

q r

s

[2, 2]
[1, 4]

[b, 3]

[a, 0]

[a, 1]

p0 q2 r4

q3s0

s1

[2, 2]

[1, 4]

[1, 4]
[b, 3]

[b, 3]

[a, 0]

[a, 1]
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p

q r

s

[2, 2]
[1, 4]

[b, 3]

[a, 0]

[a, 1]

p0 q2 r4

q3s0

s1

2

1

1
b

b

a

a
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