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@ Preliminary notions

© Tiles

© Monoids automata and expressions

@ Transformations
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Expressions and automata

b*(ab+ ba) b~
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Weighted expressions and automata
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Weighted expressions and automata
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Two-way automata
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Two-way automata
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Two-way automata

Infinite sum 7?I
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Rationally additive semirings [Esik, Kuich, 02]

Axioms for ) :
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Rationally additive semirings [Esik, Kuich, 02]

Axioms for ) :
e > {a,b}=a+0b
e > x" exists for all x
neN

e x> yi = > (xy;) (distributivity)
@ "associativity”

Co-examples :

° (@+U{OO},+,X) o Q
@ Rational languages o7
@ Tropical semirings ° .

Not all families need to be summable.
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jectives

Expressions for weighted 2w ?
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Expressions for weighted 2w ?

Alur Expressions
E.F=k|a|E+F|EF|E |E«F|EY |EQF|E~|E®

For non ambiguity only !
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Expressions for weighted 2w ?

Alur Expressions
E.F=k|a|E+F|EF|E |E«F|EY |EQF|E~|E®

For non ambiguity only !
But all semirings.
The sum is useless (monoid).
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The main idea

Series : A* — K
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Series : M — K

Sakarovitch : graded monoids
¢ : M — N such that:

° o(m)>0ifm#1py

o p(mn) = p(m) + ¢(n)

Delta Marseille Exp. and aut. over pre-rationals 7/24



Series : M — K

Sakarovitch : graded monoids
¢ : M — N such that:

° o(m)>0ifm#1py

o p(mn) = p(m) + ¢(n)

@ Free Monoid

@ Commutative Monoid

Delta Marseille Exp. and aut. over pre-rationals 7/24



Series : M — K

Sakarovitch : graded monoids

¢ : M — N such that:
@ p(m)>0if m#1py
° p(mn) = p(m) + p(n)

Co-examples
@ Free Monoid o Free group

e Commutative Monoid @ idempotent (# 1py).
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Outline

© Tiles
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Tile monoid of Dicky/Janin
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Tile monoid of Dicky/Janin
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Tile monoid of Dicky/Janin
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Tile monoid of Dicky/Janin

®<—
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Tile monoid of Dicky/Janin

u \l/ v wi  Wp
J
I
e — o e o
J
J
(2 L L L ]
J
a a
Generated by : %i , noted a, ﬁ , noted a
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Tuile - ab 4
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Tuile - ab 4

- abb - 3ab

- abb - bbaab
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Tuile - ab
L F a b =
] i i 1

L I—‘ a b; [ a

T %
aib‘%; ia‘b‘4‘
J ¥

- abb - 3ab Faz-ab---

- abb - bbaab  aaaaaa - abbaab
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Properties for tiles

Given a tile :
o Finite factors
@ Infinitely many representatives (but a regular language)

o Captures families of 2-way runs
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Two-way automata
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Two-way automata are one way ! (over the tiles)

® 17 lﬂ?lbl?llj

25.2%

1+ la,1b ___1a,1b
%—‘( (@ W S——(®)

23,2b
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Two-way automata are one way ! (over the tiles)

® 17 li? 1517, lb j®ﬁ

<_
29,2b

la,1b ___1a,1b

RO O OL ORS  OR

23,2b

= ((a+ b)(a+ b)2(a + b)) (a+ b)(a+ b)
tile of the form + u -
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Two-way automata are one way ! (over the tiles)

” /{? 15.17,15,

u\/O—'

25.2%

. 1F . la,lb! 1a, lbl @_»

23,2b

= ((a+ b)(a+ b)2(a + b)) (a+ b)(a+ b)
tile of the form + u -

Functions over transitions

A(p, k,m,q) = m : label
7(p, k,m,q) = k : weight
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Weight in automata

run : [q717a7 r]7 [r717b7 5]7 [S‘/ 275‘/ q]7 [q717b7 r] =w

m(w)=1.121=2 X w) = abbb=ab the tile!
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Weight in automata

run : [q7 1787 r]7 [r7 17 b',‘ 5]7 [572757 q]7 [q" 17 b',‘ r] =w
m(w)=1.121=2 X w) = abbb=ab the tile!

R 4 accepting paths: language of transitions words, rational.

[All)= Y 7maw)

wERANA (1)

Valid 7 Over rat. add. > ¢(w) exists when L rational, ¢ morphism.
welL
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Expressions

u s ()"

- ((a+ b)*+ (2a + bb)*F )" (a + b)*H
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Expressions

u s ()"

- ((a+ b)*+ (2a + bb)*F )" (a + b)*H

Rational expressions ! (over tiles)

[E-FI(t) = ) [ENa)[FI(t)

titr=t

Validity ?
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K rationally additive, T the tile monoid.
Tiles of the form + w -

Theorem

Two-way K-automaton
=
K-automaton over T
=
K-expression over T.

Extension of the boolean result (Dicky-Janin) to the weigthed case.
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Outline

© Monoids automata and expressions
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Pre-rationals
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Pre-rationals

G* M
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Pre-rationals
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Pre-rationals

o : G —wM

Such that ¢~1(m) is rational Vm :
with © morphism from G* to K >~ m(w) exists !

wep=1(m)
All automata are valid.

Delta Marseille Exp. and aut. over pre-rationals 18 /24



Pre-rationals

o : G —wM

Such that ¢~1(m) is rational Vm :

with © morphism from G* to K >~ m(w) exists !
wep=1(m)

All automata are valid.

@ Free inverse monoid (Tiles, trees)

@ Graded monoids.

@ ldempotent generators.

Not the free group
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Outline

@ Transformations
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Main result

K rationally additive, M pre-rational monoid.

K-automaton over M & K-expression over M
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A X

Unamb. E, ¥
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A X

Unamb. E, ¥

Unamb. A, Y «<— Unamb. E, ¥
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Automata to Expression

Automaton

3aab

2a

@

[A](m)
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Automata to Expression

Automaton—  Accepting

runs, \, 7.

3aab [p, 3, aab, p]

® 0

2a [p7 2? a? q]
@ @
[Al(m) = > m(w)
weAT1(m)
NR4
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Automata to Expression

Automaton—  Accepting — Unambiguous

runs, \, 7. expression
3aab [p,3, aab, p| [p, 3, aab, p]*[p, 2, a, q]
2a [p,2,a,q]
[A](m) = >, m(w)= >, m(w)xe(w)
weA"1(m) weA~1(m)
NR 4
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Automata to Expression

Automaton—  Accepting — Unambiguous —  Substitution
runs, \, 7. expression A, TT.
3aab [p, 3, aab, p| [p.3.aab, p|*[p,2,a,q]  (3aab)*2a
2a [p.2,2,q]
[Al(m) = >, m(w) >, m(w)xe(w)=[Ex<](m)
weA~1(m) weA~1(m)
NR 4
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Expression to automata

From F, we want E unambiguous, X, 7 such that:

[FI(m) = [Exz](m)

F = (m)2 = E = ([m0")[21)

Delta Marseille Exp. and aut. over pre-rationals 23 /24



Expression to automata

From F, we want E unambiguous, A, 7 such that:
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Expression to automata

From F, we want E unambiguous, A, 7 such that:

[FI(m) = [Exx](m)

F=(m)2—F = (m1)12—E = ([m0]*[1,1])*[1,2][2. 3]

[m, 0]
[1,1] v [1,2] _[2,3]

—

[1,1]
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Expression to automata

From F, we want E unambiguous, A\, 7 such that:

[FI(m) = [Exx](m)

F=(m)2—F = (m1)12— E = ([m,0]*[1,1])*[1,2][2. 3]
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Conclusion

Extension of weighted Kleene theorem to other monoids.
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Conclusion

Extension of weighted Kleene theorem to other monoids.

Rational expressions for two-way!
for tree walking!
for graphs?

Trade-off between K and M
Easy construction, tedious proof

Thank you for your attention.
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Tle 3|baa

8 aa 1|3
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Automates

Tle 3|baa

8 aa 1|3
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Monoide inversif libre

A—{3lac A}
—de (AU A)* vers (AU A)* inductively as:

E=¢ ua=3au ua = au.

Monoide inversif libre
Quotient de (AU A)* par

XXX = X XX = X XXYY = yyxx
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Et si ca ne matche pas 7

Arbres de Munn.

AN

aab abab
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Le lemme qui fait tout marcher.

E NA booléenne, K rat. add., M (pas nécessairement pré-rat). A,
morphismes.

Lemme
E\r = E[Va, a < A(a)n(a)] valide

m € M, F sous-expression de E:
2oa(w)=m T(W)xF(w) existe.
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Le lemme qui fait tout marcher.

E NA booléenne, K rat. add., M (pas nécessairement pré-rat). A,
morphismes.

Lemme
E\r = E[Va, a < A(a)n(a)] valide

m € M, F sous-expression de E:
2oa(w)=m T(W)xF(w) existe.

[Excl(m) = > #(w)xe(w)

A(w)=m

Delta Marseille Exp. and aut. over pre-rationals 4/5



Expression vers automate : exemple

a+a+2b* — [a,0] + [a, 1] + [2,2][b, 3]*[1, 4]
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Expression vers automate : exemple

a+a+2b* — [a,0] + [a, 1] + [2,2][b, 3]*[1, 4]

[a,0] (s—
a, 1]
(2.2 [1,4]
[b, 3]
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Expression vers automate : exemple

a+a+2b* — [a,0] + [a, 1] + [2,2][b, 3]*[1, 4]

[b,3]
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