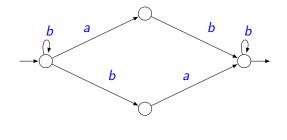
Weighted Automata and Expressions over Pre-rational Monoids.

Delta Marseille

1 Preliminary notions

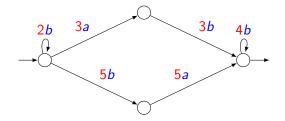
Transformations

Expressions and automata



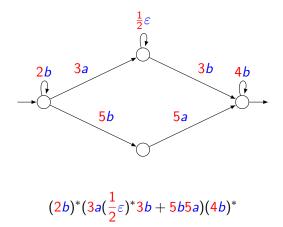
 $b^*(a b + b a) b^*$

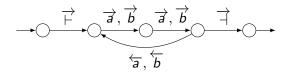
Weighted expressions and automata

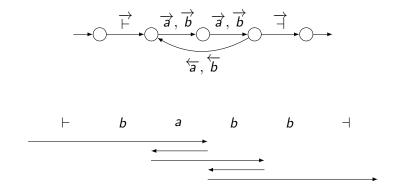


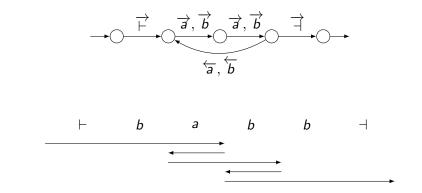
 $(2b)^*(3a3b+5b5a)(4b)^*$

Weighted expressions and automata









Infinite sum ?I

Axioms for \sum : • $\sum{a, b} = a + b$

- $\sum{a, b} = a + b$
- $\sum_{n \in \mathbb{N}} x^n$ exists for all x

- $\sum{a, b} = a + b$
- $\sum_{n \in \mathbb{N}} x^n$ exists for all x
- $x \sum y_i = \sum (xy_i)$ (distributivity)

- $\sum{a, b} = a + b$
- $\sum_{n \in \mathbb{N}} x^n$ exists for all x
- $x \sum y_i = \sum (xy_i)$ (distributivity)
- "associativity"

Axioms for \sum :

- $\sum{a, b} = a + b$
- $\sum_{n \in \mathbb{N}} x^n$ exists for all x
- $x \sum y_i = \sum (xy_i)$ (distributivity)
- "associativity"

Examples :

- ($\mathbb{Q}_+ \cup \{\infty\}, +, \times$)
- Rational languages
- Tropical semirings

Not all families need to be summable.

Axioms for \sum :

- $\sum{a, b} = a + b$
- $\sum_{n \in \mathbb{N}} x^n$ exists for all x
- $x \sum y_i = \sum (xy_i)$ (distributivity)
- "associativity"

Examples :

- ($\mathbb{Q}_+ \cup \{\infty\}, +, \times$)
- Rational languages
- Tropical semirings

Not all families need to be summable.

Expressions for weighted 2w ?

Expressions for weighted 2w ?

Alur Expressions

$$E,F := k \mid a \mid E + F \mid E.F \mid E^* \mid E \leftarrow F \mid E^{\overleftarrow{*}} \mid E \odot F \mid E^{\leftrightarrow} \mid E^{\leftarrow}$$

For non ambiguity only !

Expressions for weighted 2w ?

Alur Expressions

$$E,F := k \mid a \mid E + F \mid E.F \mid E^* \mid E \leftarrow F \mid E^{\overleftarrow{*}} \mid E \odot F \mid E^{\leftrightarrow} \mid E^{\leftarrow}$$

For non ambiguity only ! But all semirings. The sum is useless (monoid). $\mathsf{Series}: A^* \mapsto \mathbb{K}$

 $\mathsf{Series}: \ M \mapsto \mathbb{K}$

Series : $M \mapsto \mathbb{K}$

Sakarovitch : graded monoids

 $\varphi \ : \ {\it M} \mapsto \mathbb{N}$ such that:

•
$$\varphi(m) > 0$$
 if $m \neq 1_M$

•
$$\varphi(mn) = \varphi(m) + \varphi(n)$$

 $\mathsf{Series}:\ M\mapsto \mathbb{K}$

Sakarovitch : graded monoids

 $\varphi \ : \ {\it M} \mapsto \mathbb{N}$ such that:

•
$$\varphi(m) > 0$$
 if $m \neq 1_M$

•
$$\varphi(mn) = \varphi(m) + \varphi(n)$$

Examples

- Free Monoid
- Commutative Monoid

Series : $M \mapsto \mathbb{K}$

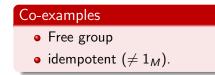
- Sakarovitch : graded monoids
- $\varphi : M \mapsto \mathbb{N}$ such that:

•
$$\varphi(m) > 0$$
 if $m \neq 1_M$

•
$$\varphi(mn) = \varphi(m) + \varphi(n)$$

Examples

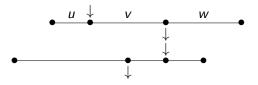
- Free Monoid
- Commutative Monoid

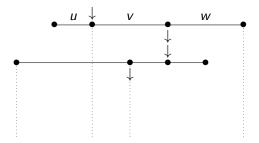


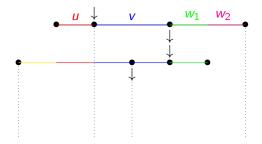
Preliminary notions

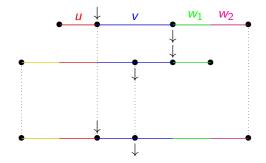
4 Transformations

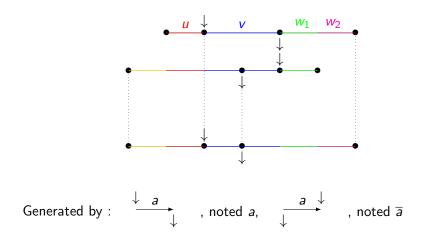






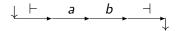






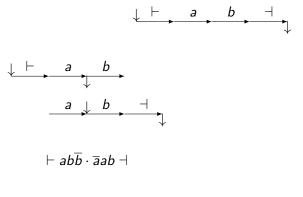
Example

Tuile $\vdash ab \dashv$



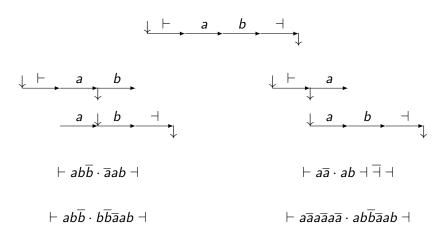
Example

Tuile $\vdash ab \dashv$



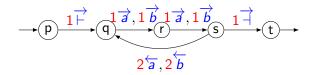
Example

Tuile $\vdash ab \dashv$

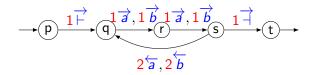


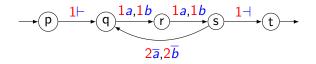
Given a tile :

- Finite factors
- Infinitely many representatives (but a regular language)
- Captures families of 2-way runs

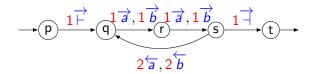


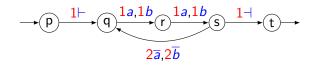
Two-way automata are one way ! (over the tiles)





Two-way automata are one way ! (over the tiles)

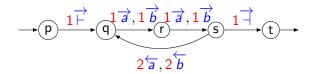


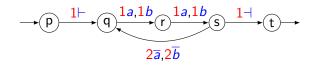


$$\vdash \left((a+b)(a+b)2(\overline{a}+\overline{b})\right)^*(a+b)(a+b)\dashv$$

tile of the form $\vdash u \dashv$

Two-way automata are one way ! (over the tiles)





$$\vdash ((a+b)(a+b)2(\overline{a}+\overline{b}))^*(a+b)(a+b)\dashv$$

tile of the form $\vdash u \dashv$

Functions over transitions

 $\lambda(p, k, m, q) = m$: label $\pi(p, k, m, q) = k$: weight

$$\pi(w) = 1.1.2.1 = 2$$
 $\lambda(w) = ab\overline{b}b = ab$ the tile!

$$\pi(w) = 1.1.2.1 = 2$$
 $\lambda(w) = ab\overline{b}b = ab$ the tile!

 R_A accepting paths: language of transitions words, rational.

$$\pi(w) = 1.1.2.1 = 2$$
 $\lambda(w) = ab\overline{b}b = ab$ the tile!

 R_A accepting paths: language of transitions words, rational.

$$\llbracket \mathcal{A}
rbracket(t) = \sum_{w \in R_{\mathcal{A}} \cap \lambda_{\mathcal{A}}^{-1}(t)} \pi_{\mathcal{A}}(w)$$

$$\pi(w) = 1.1.2.1 = 2$$
 $\lambda(w) = ab\overline{b}b = ab$ the tile!

 R_A accepting paths: language of transitions words, rational.

$$\llbracket \mathcal{A}
rbracket(t) = \sum_{w \in \mathcal{R}_{\mathcal{A}} \cap \lambda_{\mathcal{A}}^{-1}(t)} \pi_{\mathcal{A}}(w)$$

Valid ?

$$\pi(w) = 1.1.2.1 = 2$$
 $\lambda(w) = ab\overline{b}b = ab$ the tile!

 R_A accepting paths: language of transitions words, rational.

$$\llbracket \mathcal{A}
rbracket(t) = \sum_{w \in R_{\mathcal{A}} \cap \lambda_{\mathcal{A}}^{-1}(t)} \pi_{\mathcal{A}}(w)$$

Valid ? Over rat. add. $\sum_{w \in L} \varphi(w)$ exists when L rational, φ morphism.

Expressions

 $u \mapsto (\widetilde{u})^*$

 $\vdash \left((a+b)^* \dashv \exists (\overline{a}a + \overline{b}b)^* \vdash \vdash \right)^* (a+b)^* \dashv$

 $u \mapsto (\widetilde{u})^*$

$$\vdash \left((a+b)^* \dashv \exists (a+b)^* \vdash \vdash \right)^* (a+b)^* \dashv$$

Rational expressions ! (over tiles)

$$\llbracket E.F \rrbracket(t) = \sum_{t_1t_2=t} \llbracket E \rrbracket(t_1) \llbracket F \rrbracket(t_2)$$

 $u \mapsto (\widetilde{u})^*$

$$\vdash \left((a+b)^* \dashv \overline{\dashv} (\overline{a}a + \overline{b}b)^* \overline{\vdash} \vdash \right)^* (a+b)^* \dashv$$

Rational expressions ! (over tiles)

$$\llbracket E.F \rrbracket(t) = \sum_{t_1t_2=t} \llbracket E \rrbracket(t_1) \llbracket F \rrbracket(t_2)$$

Validity ?

 $\mathbb K$ rationally additive, T the tile monoid. Tiles of the form $\vdash w \dashv$

Theorem

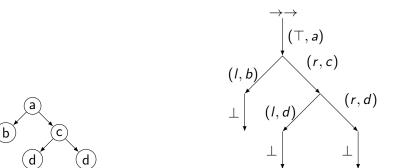
Two-way \mathbb{K} -automaton \Leftrightarrow \mathbb{K} -automaton over T \Leftrightarrow \mathbb{K} -expression over T.

Extension of the boolean result (Dicky-Janin) to the weigthed case.

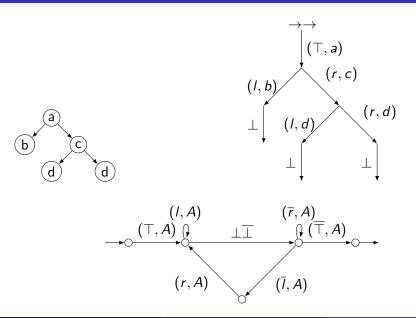
Preliminary notions

Transformations

Trees



Trees



Pre-rationals

М

G M

*G** *M*

 $\varphi : G^* \mapsto M$

$$\varphi : G^* \mapsto M$$

Such that $\varphi^{-1}(m)$ is rational $\forall m$:

$$\varphi : G^* \mapsto M$$

Such that $\varphi^{-1}(m)$ is rational $\forall m$: with π morphism from G^* to $\mathbb{K} \sum_{w \in \varphi^{-1}(m)} \pi(w)$ exists !

All automata are valid.

$$\varphi : G^* \mapsto M$$

Such that $\varphi^{-1}(m)$ is rational $\forall m$: with π morphism from G^* to $\mathbb{K} \sum_{w \in \varphi^{-1}(m)} \pi(w)$ exists !

All automata are valid.

Example

- Free inverse monoid (Tiles, trees)
- Graded monoids.
- Idempotent generators.

Not the free group

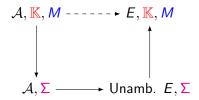
Preliminary notions

3 Monoids automata and expressions

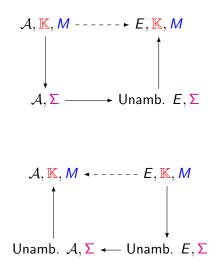
Transformations

${\mathbb K}$ rationally additive, M pre-rational monoid.

Theorem			
${\mathbb K}$ -automaton over M	\Leftrightarrow	\mathbb{K} -expression over M	

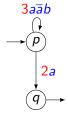


Path



Automata to Expression

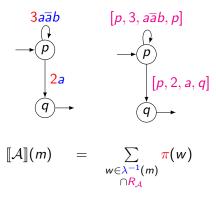
Automaton



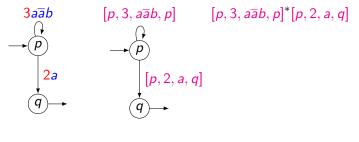
 $[\![\mathcal{A}]\!](m)$

Automata to Expression

Automaton \rightarrow Accepting runs, λ , π .

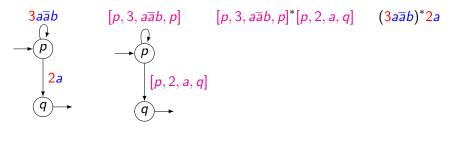


 $\begin{array}{rcl} {\sf Automaton} \rightarrow & {\sf Accepting} & \rightarrow & {\sf Unambiguous} \\ & {\sf runs, } \lambda, \, \pi. & {\sf expression} \end{array}$



 $\llbracket \mathcal{A} \rrbracket(m) = \sum_{\substack{w \in \lambda^{-1}(m) \\ \cap \mathcal{R}_{\mathcal{A}}}} \pi(w) = \sum_{\substack{w \in \lambda^{-1}(m) \\ w \in \lambda^{-1}(m)}} \pi(w) \chi_{\mathcal{E}}(w)$

Automaton \rightarrow Accepting \rightarrow Unambiguous \rightarrow Substitution runs, λ , π . expression λ , π .



 $\llbracket \mathcal{A} \rrbracket(m) = \sum_{\substack{w \in \lambda^{-1}(m) \\ \cap \mathcal{R}_{\mathcal{A}}}} \pi(w) = \sum_{\substack{w \in \lambda^{-1}(m) \\ w \in \lambda^{-1}(m)}} \pi(w) \chi_{\mathcal{E}}(w) = \llbracket \mathcal{E}_{\lambda \pi} \rrbracket(m)$

 $\llbracket F \rrbracket(m) = \llbracket E_{\lambda \pi} \rrbracket(m)$

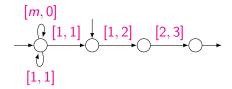
$$F = (m^*)^* 2 \rightarrow E = ([m, 0]^*)^* [2, 1]$$

 $\llbracket F \rrbracket(m) = \llbracket E_{\lambda \pi} \rrbracket(m)$

$$F = (m^*)^* 2 \rightarrow F' = (m^* 1)^* 1.2 \rightarrow E = ([m, 0]^* [1, 1])^* [1, 2] [2, 3]$$

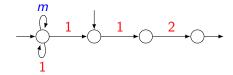
 $\llbracket F \rrbracket(m) = \llbracket E_{\lambda \pi} \rrbracket(m)$

$$F = (m^*)^* 2 \rightarrow F' = (m^* 1)^* 1.2 \rightarrow E = ([m, 0]^* [1, 1])^* [1, 2] [2, 3]$$



 $\llbracket F \rrbracket(m) = \llbracket E_{\lambda \pi} \rrbracket(m)$

 $F = (m^*)^* 2 \rightarrow F' = (m^* 1)^* 1.2 \rightarrow E = ([m, 0]^* [1, 1])^* [1, 2] [2, 3]$



Extension of weighted Kleene theorem to other monoids.

Extension of weighted Kleene theorem to other monoids.

Rational expressions for two-way!

Extension of weighted Kleene theorem to other monoids.

Rational expressions for two-way! for tree walking!

Rational expressions for two-way! for tree walking! for graphs?

Rational expressions for two-way! for tree walking! for graphs?

Trade-off between \mathbb{K} and M

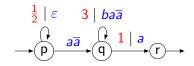
Rational expressions for two-way! for tree walking! for graphs?

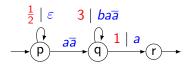
Trade-off between \mathbb{K} and MEasy construction, tedious proof

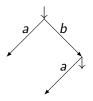
Rational expressions for two-way! for tree walking! for graphs?

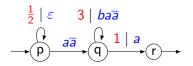
Trade-off between \mathbb{K} and MEasy construction, tedious proof

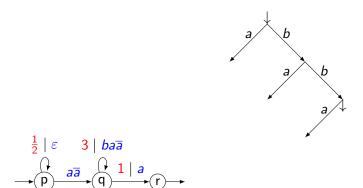
Thank you for your attention.

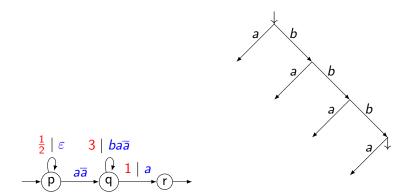


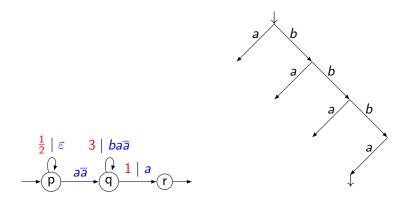












$$\overline{A} = \{\overline{a} | a \in A\}.$$

$$\overline{\cdot} \quad \text{de } (A \cup \overline{A})^* \text{ vers } (A \cup \overline{A})^* \text{ inductively as:}$$

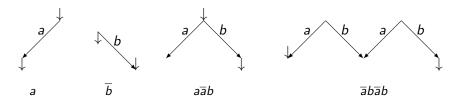
$$\overline{\varepsilon} = \varepsilon$$
 $\overline{ua} = \overline{a} \overline{u}$ $\overline{u\overline{a}} = \overline{a} \overline{u}$.

Monoïde inversif libre

Quotient de $(A \cup \overline{A})^*$ par

$$x\overline{x}x = x$$
 $\overline{x}x\overline{x} = \overline{x}$ $x\overline{x}y\overline{y} = y\overline{y}x\overline{x}$

Arbres de Munn.



E NA booléenne, \mathbbm{K} rat. add., M (pas nécessairement pré-rat). $\lambda,\,\pi$ morphismes.

Lemme $E_{\lambda,\pi} = E[\forall a, a \leftarrow \lambda(a)\pi(a)]$ valide \Leftrightarrow $m \in M, F$ sous-expression de E: $\sum_{\lambda(w)=m} \pi(w)\chi_F(w)$ existe.

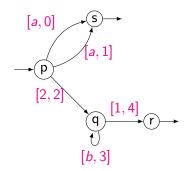
E NA booléenne, \mathbbm{K} rat. add., M (pas nécessairement pré-rat). $\lambda,\,\pi$ morphismes.

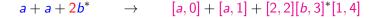
Lemme $E_{\lambda,\pi} = E[\forall a, a \leftarrow \lambda(a)\pi(a)]$ valide \Leftrightarrow $m \in M, F$ sous-expression de E: $\sum_{\lambda(w)=m} \pi(w)\chi_F(w)$ existe.

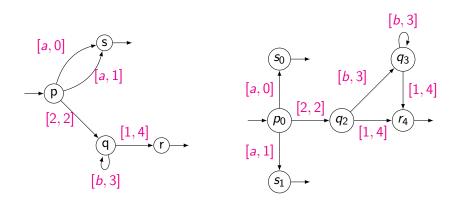
$$\llbracket E_{\lambda,\pi} \rrbracket(m) = \sum_{\lambda(w)=m} \pi(w) \chi_E(w)$$

$a + a + 2b^* \rightarrow [a, 0] + [a, 1] + [2, 2][b, 3]^*[1, 4]$

$$a + a + 2b^* \rightarrow [a, 0] + [a, 1] + [2, 2][b, 3]^*[1, 4]$$







$$a + a + 2b^* \rightarrow [a, 0] + [a, 1] + [2, 2][b, 3]^*[1, 4]$$

