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1 - From two-way to universal transducer
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Reverse : .Σ∗/ → Σ∗
.a1 . . . an/ → an . . . a1

0 → 1 → 1 ← 2 ← qF
.|ε /|ε /|ε .|ε

a|ε
b|ε

a|a
b|b

4/27

Deterministic Two-way Transducers: Example 1



LastFirst : .{a, b}+/ → .{a, b, c}+/

.uσ/ → .σc |u|/ with σ ∈ {a, b}

qI→ 1→ 2← 3← 4← qF
.|.

a, b|ε

/|ε /|ε
a|a
b|b

a, b|c

.|/
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Deterministic Two-way Transducers: Example 2



A D2FST is one-way definable if there exists a equivalent one-way
(functional) transducer.

Definition

One-way : directions restricted to →

Functional =
deterministic

+
look-ahead (finite information on the suffix of the input)

Note that
- Reverse is not one-way definable
- LastFirst is one-way definable
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The One-wayness Problem of D2FST



Universal transducer = word-to-word finite state transducers that
are deterministic for some (co-deterministic) look-ahead automa-
ton

Definition

aka Deterministic top-down tree-to-string transducers with
look-ahead and monadic inputs (see Maneth-Engelfriet)

Transition rules for some universal transducer G with look-ahead
automaton B:

q(σ) p−→ v0q1v1 . . . qnvn

σ ∈ Σ, v0, . . . vn ∈ ∆∗, States q, q1 . . . qn of G, a state p from B

+ some initialization rules τI : p → v0q1v1 . . . qnvn.
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Universal Transducers



Reverse :



Look-ahead automaton
p pf

a, b

/

A universal transducer G

τI(p) = q
q(a) p−→ q a
q(b) p−→ q b
q(/) −→ ε

Semantics: G(.aabba/) = [[q]]p(aabba/) = abbaa

(aabba/, q, p) ` (abba/, qa, p) ` (bba/, qaa, p) ` (ba/, qbaa, p)

` (a/, qbbaa, p) ` (/, qabbaa, p) ` (ε, abbaa, pF )
At each step, the suffix of the input word belongs to L(p)
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Universal Transducers: Semantics by Example
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LastFirst : .{a, b}+/ → .{a, b, c}+/

.uσ/ → .σc |u|/ with σ ∈ {a, b}

pFp′p /a, b

a, b

τI(p) = .q/

q(a) p−→ q c q(b) p−→ q c
q(a) p′

−→ q′ a q(b) p′
−→ q′ b

q′(/) −→ ε

[[q]]p = {[[q]]p(u) | u ∈ L(p)} = ac∗ + bc∗ [[q′]]p′ = ε
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Universal Transducers: Semantics by Example (II)



The (co-deterministic) look-ahead construction

Left-left traversals on u in A = (q, q′) if u admits a left-left
computation in the D2FST A from (q,→) to (q′,←)

T : the set of the finite set of all left-left traversals

- The set of states of the look-ahead automaton is T
- Transitions are defined from T× Σ× T

10/27

From D2FST to Universal Transducers



The (co-deterministic) look-ahead construction

Traversals T = {(q1, q2), (q3, q4)}

q1
q2

q3
q4

Transitions for a =


(q,→, a, q1,→, v0) (q2,←, a, q′,→, v1)
(q′,→, a, q3,→, v2) (q4,←, a, q′′,→, v3)

(r ,→, a, r ′,←, v4) (r ′,←, a, r ′′,←v5)
New traversal T ′ = {(q, q′′), (r , r ′′)} and a transition (T ′, a,T ) in
the look-ahead.
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From D2FST to Universal Transducers



The transition rules construction

We produce a transition rule for each a ∈ Σ, for each pair (q, q′′)
and each look-ahead T such that (q, q′′) ∈ T ′ and (T ′, a,T ) is a
look-ahead rule. E.g.
T = {(q1, q2), (q3, q4)}

q1
q2

q3
q4

a
(q,→)

(q′,→)

(q′′,←)

v0

v1

v2

v3

(q, q′′)(a) T−→ v0(q1, q2)v1v2(q2, q3)v3
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From D2FST to Universal Transducers



2 - Normalizing universal transducer
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Outline



A language [[q]]p is
periodic if for v ∈ Σ∗,

[[q]]p ⊆ {v}∗

the shortest of such v is the period π of [[q]]p
almost-periodic if for some β, π ∈ Σ∗,

[[q]]p ⊆ β.{π}∗

semi-periodic if for some k ∈ N, some {(βi , πi ) | i ∈ [1..k]},

[[q]]p ⊆
⋃
k
βi .{πi}∗

strongly aperiodic (and thus, infinite) if it is not semi-periodic

13/27

Classifying Ranges of states under some look-ahead



A universal transducer G with look-ahead automaton B

What ?
Find an equivalent universal transducer G′ s.t. for all q, p,

[[q]]p is either infinite periodic or strongly aperiodic

How ?
Essentially modify the look-ahead automaton B (and G
slightly)

14/27

The Role of Normalization of Universal Transducers



Reverse

τI(p) = q
q(a) p−→ q a
q(b) p−→ q b
q(/) −→ ε

[[q]]p = {a, b}∗ is strongly aperiodic

This universal transducer is normalized

15/27

Normalization : Example 1



LastFirst : .{a, b}+/ → .{a, b, c}+/

.uσ/ → .σc |u|/ with σ ∈ {a, b}

pFp′p /a, b

a, b

τ(p) = q
q(a) p−→ q c q(b) p−→ q c
q(a) p′

−→ q′ a q(b) p′
−→ q′ b

q′(/) −→ ε

[[q]]p = ac∗ + bc∗ is semi-periodic
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Normalization : Example 2



Removing semi-periodic states :
Look-ahead refinement by splitting states according to the sum of
almost-periodic languages
[[q]]p = ac∗ + bc∗

p is splitted into pa and pb pfp′
pa

pb

/
a

b

a, b

a, b

τI(pa) = . q/
τI(pb) = . q/

q(a) pa−→ q c q(b) pa−→ q c q′(/) −→ ε

q(a) pb−→ q c q(b) pb−→ q c
q(a) p′

−→ q′ a q(b) p′
−→ q′ b

[[q]]pa = ac∗ [[q]]pa = bc∗
17/27

Normalization : Example 2 - Step 1
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Removing almost-periodic states :
∼ earliest output of longest common prefix (lcp)

- identify the first letter σq,p of the lcp’s of all [[q]]p
- refine the look-ahead and then modify the transition rules to
output σq,p as soon as possible

- reiterate (lcp of the [[q]]p are shorter)

LastFirst :

τI(pa) = . q/
τI(pb) = . q/

q(a) pa−→ q c q(b) pa−→ q c
q(a) pb−→ q c q(b) pb−→ q c
q(a) p′

−→ q′ a q(b) p′
−→ q′ b

q′(/) −→ ε
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Removing almost-periodic states :
∼ earliest output of longest common prefix (lcp)

- identify the first letter σq,p of the lcp’s of all [[q]]p
- refine the look-ahead and then modify the transition rules to
output σq,p as soon as possible

- reiterate (lcp of the [[q]]p are shorter)

LastFirst : Look-ahead is unchanged

τI(pa) = . a q/
τI(pb) = . b q/

q(a) pa−→ q c q(b) pa−→ q c
q(a) pb−→ q c q(b) pb−→ q c
q(a) p′

−→ ε q(b) p′
−→ ε

[[q]]pa , [[q]]pb are periodic of period c
18/27

Normalization : Example 2 - Step 2



3 - Deciding one-wayness of universal transducers
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Ideas borrowed from [Laurence, Lemay, Niehren, Staworko and
Tommasi: "Learning Sequential Tree-to-Word Transducers"]

For a word v and a language L,

Push(L, v) = L′ if L.v = v .L′

- L is periodic of period π then v = πkπ′ for k ∈ N and
π = π′π′′ and L′ = (π′)−1(L.π′).

- L is strongly aperiodic then the set of v ’s is finite and
prefix-closed and L′ = v−1(L.v)

20/27
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- L is periodic of period π then v = πkπ′ for k ∈ N and
π = π′π′′ and L′ = (π′)−1(L.π′).

- L is strongly aperiodic then the set of v ’s is finite and
prefix-closed and L′ = v−1(L.v)

Push({ε, ab, ababab, ababababab}, aba) = {ε, ba, bababa, bababababa}

Push((ab)∗, a) = (ba)∗

Push(aΣ∗, a) = Σ∗a
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Ideas borrowed from [Laurence, Lemay, Niehren, Staworko and
Tommasi: "Learning Sequential Tree-to-Word Transducers"]

For a word v and a language L,

Push(L, v) = L′ if L.v = v .L′

- L is periodic of period π then v = πkπ′ for k ∈ N and
π = π′π′′ and L′ = (π′)−1(L.π′).

- L is strongly aperiodic then the set of v ’s is finite and
prefix-closed and L′ = v−1(L.v)

Pushing Words through States under Look-ahead
Annotating states with (part of) words that are pushed through
Define syntactically Push([[q]]p, v) by means of a (finitely many)
new states q|v̄ together with its transition rules such that
Push([[q]]p, v) = [[q|v̄ ]]p

20/27

Pushing Words through Languages / States



Compute from a universal transducer G with m copies a one-way
deterministic transducer A with look-ahead.

Ingredient:

- The look-ahead of A is the look-ahead of G
- States from A are of the form [q1v1 . . . qnvn] with n ≤ m and
such that
• the qi ’s are states of G
• the vi ’s remain small

• compute new states with the semantics of universal
transducers and Pushing

Small ?
Not larger than F (|G|)

21/27

The Algorithm in a Nutshell



Reverse

τI(p) = q
q(a) p−→ q a
q(b) p−→ q b
q(/) −→ ε

(sI ,→, ., p, [q],→, ε)
([q],→, a, p, [qa],→, ε)
([qa],→, a, p, [qaa],→, ε)
. . .
([qa . . . a],→, a, p, [qa . . . aa],→, ε)

[qa . . . aa] larger than F (|G|) ⇒ not one-way definable

22/27

Running the Algorithm on Examples (I)
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LastFirst : .{a, b}+/ → .{a, b, c}+/

.uσ/ → .σc |u|/ with σ ∈ {a, b}

τI(pa) = .a q/
τI(pb) = .b q/

q(a) pa−→ q c q(b) pa−→ q c
q(a) pb−→ q c q(b) pb−→ q c
q(a) p′

−→ ε q(b) p′
−→ ε

[[q]]pa , [[q]]pb are periodic of period c
{

Push(q, pa, c) = cq
Push(q, pb, c) = cq

(sI ,→, ., pa, [q/],→, .a)
using q(a) pa−→ q c and pushing, [qc/] becomes c[q/]
([q/],→, a, pa, [q/],→, c) ([q/],→, b, pa, [q/],→, c)
([q/],→, a, pb, [q/],→, c) ([q/],→, b, pb, [q/],→, c)
([q/],→, a, p′, sF ,→, /) ([q/],→, b, p′, sF ,→, /)
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Running the Algorithm on Examples (II)



If successful, A is of size at most 4-exponential in the size of the
input D2FST.

Guessing a failure requires only 3-exponential space.

Next ?

- On going : the second step of normalization is useless ⇒ drop
one exponential

- Educated guess : pushing only powers of (complete) periods
through periodic language

- (False ?) hope : technics could be adapted to (normalized)
functional 2FST.

24/27
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[[A]](.u1#σu2/) = .a|u1|+|u2|+2/ if σ = a, and
[[A]](.u1#σu2/) = .ba|u1|/ if σ = b

qI→ 1→ 2→

3a←

3b←

4a→

4b→

5← qF
.|.

a, b|ε

#|ε
a|ε

b|b

a, b,#|ε

a, b,#|ε

.|ε

.|ε

.|ε
a, b,#|a

.|ε
a, b|a

/|/

#|/

a, b,#, /|ε

.|ε
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More Example



The look-ahead automaton

T/T#

Ta

Tb

T ′a

T ′b

T#a

T#b

Taa

Tab

Tba

Tbb

/

a

b

a

b

a

b

#

#
a

b

a

b

a b

#

#

#

#

#

#

#

#

a
b

a

b

ab

#

#

a
b

a

b

ab
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More Example



(sI ,→, .,Ta, (1, 4)/Ta ,→, .a)
(sI ,→, .,Tb, (1, 4)/Tb ,→, .b)

((1, 4)/Ta ,→, σ,Ta, (1, 4)/Ta ,→, c) for σ ∈ {a, b}
((1, 4)/Tb ,→, σ,Tb, (1, 4)/Tb ,→, c) for σ ∈ {a, b}
((1, 4)/Ta ,→, a,T/, ε,→, /)
((1, 4)/Tb ,→, b,T/, ε,→, /)

27/27

More Example


