From Two-way to One-way Finite State
Transducers: a Shepherdson’'s Approach

Benjamin Monmege, Pierre-Alain Reynier
and Jean-Marc Talbot

LIF, Aix-Marseille

DELTA Kick-off - Feb. 9-10

Outline

1 From two-way to universal transducer
2 Normalizing universal transducer

3 Deciding one-wayness of universal transducers

2/27

Outline

1 - From two-way to universal transducer

3/27

Deterministic Two-way Transducers: Example 1

Z*
dp...d1

Reverse : >y g

%
>aiy...apd —

4/27

Deterministic Two-way Transducers: Example 2

LastFirst : >{a,b}Ta — p{a,b,c}T«

with o € {a, b
>Uo< — poclila {a, b}

a, ble a, blc

ala
>l Q de oy dle o~ blb Q >4
qi— 1— 24— 3¢ 4 @

NN/ AN ALY

5/27

The One-wayness Problem of D2FST

Definition
A D2FST is one-way definable if there exists a equivalent one-way
(functional) transducer.

6/27

The One-wayness Problem of D2FST

Definition
A D2FST is one-way definable if there exists a equivalent one-way
(functional) transducer.

One-way : directions restricted to —

Functional =
deterministic
+
look-ahead (finite information on the suffix of the input)

6/27

The One-wayness Problem of D2FST

Definition
A D2FST is one-way definable if there exists a equivalent one-way
(functional) transducer.

One-way : directions restricted to —

Functional =
deterministic

+
look-ahead (finite information on the suffix of the input)

Note that
- Reverse is not one-way definable

- LastFirst is one-way definable

6/27

Universal Transducers

Definition
Universal transducer = word-to-word finite state transducers that
are deterministic for some (co-deterministic) look-ahead automa-
ton

7/27

Universal Transducers

Definition
Universal transducer = word-to-word finite state transducers that
are deterministic for some (co-deterministic) look-ahead automa-
ton

aka Deterministic top-down tree-to-string transducers with
look-ahead and monadic inputs (see Maneth-Engelfriet)

7/27

Universal Transducers

Definition
Universal transducer = word-to-word finite state transducers that
are deterministic for some (co-deterministic) look-ahead automa-
ton

aka Deterministic top-down tree-to-string transducers with
look-ahead and monadic inputs (see Maneth-Engelfriet)

Transition rules for some universal transducer G with look-ahead
automaton B:

q(g) L> VoqiVvi ... QnVn

oEY, v,...v, € A*, States q,q1 ... g, of G, a state p from B

7/27

Universal Transducers

Definition
Universal transducer = word-to-word finite state transducers that
are deterministic for some (co-deterministic) look-ahead automa-
ton

aka Deterministic top-down tree-to-string transducers with
look-ahead and monadic inputs (see Maneth-Engelfriet)

Transition rules for some universal transducer G with look-ahead
automaton B:

q(g) L> VoqiVvi ... QnVn

oEY, v,...v, € A*, States q,q1 ... g, of G, a state p from B
+ some initialization rules 77 : p — vqivi ... qnVp.

7/27

Universal Transducers: Semantics by Example

a, b

Look-ahead automaton

Reverse : .
A universal transducer G

q(a) Pyqa
m(p) = q q(b) 25 gb

8/27

Universal Transducers: Semantics by Example

a, b

Look-ahead automaton

Reverse : A universal transducer G
q(a) = qa
7(p) = q q(b) == qb
q(a) — €

Semantics: G(raabba<) = [q]p(aabba<) = abbaa
(aabba<, q, p) F (abba<, qa, p) - (bba<, qaa, p) b (ba<, gbaa, p)
F (a<, gbbaa, p) - (<, gabbaa, p) - (e, abbaa, pr)

At each step, the suffix of the input word belongs to L(p)

8/27

Universal Transducers: Semantics by Example (I1)

LastFirst : >{a,b}Ta — p{a,b,c}T«

with o € {a, b
>uod — poclila {a, b}

[al, = {lqls(v) | u € L(p)} = ac™ + bc* ¢y =€

9/27

From D2FST to Universal Transducers

The (co-deterministic) look-ahead construction

Left-left traversals on v in A = (q,q’) if u admits a left-left
computation in the D2FST A from (g, —) to (¢’, +)

T : the set of the finite set of all left-left traversals

- The set of states of the look-ahead automaton is T

- Transitions are defined from T x > x T

10/27

From D2FST to Universal Transducers

The (co-deterministic) look-ahead construction

Traversals T = {(q1, ¢2), (g3, qa) }

qa
g3

92
a1

10/27

From D2FST to Universal Transducers

The (co-deterministic) look-ahead construction

Traversals T = {(q1, q2), (g3, qa) }

(q",+) ~——0qa

g3 (r",«)
= - : (r',)
(r,—)
q2 a
(q7 _>) — 0

a

(q7_>737 qi, —, VO) (CI27<_737 q/7_>7 Vl)

/ !
Transitions for 2 = (q y 75 a, q3a—>av2) (q4a<_aaaq y 7 V3)

(r,—,a,r' <, v) (r',, a,r" +vs)

10/27

From D2FST to Universal Transducers

The (co-deterministic) look-ahead construction

Traversals T = {(q1, q2), (g3, qa) }

(q",+) ~——0qa :)
g3 r’,
= - : (r',)
(r,—)
q2 a
(‘77 __>) — q1
a

(q7_>787 g1, —, VO) (CI2,<—,a,q/,—>, V]_)
Transitions for a = (¢, =, 2,03, =, v2) (qa,4a,9",—,v3)

(r,—,a,r' <, v) (r',, a,r" +vs)

New traversal T' = {(q,q"),(r,r")} and a transition (T’,a, T) in
the look-ahead.

10/27

From D2FST to Universal Transducers

The transition rules construction

We produce a transition rule for each a € ¥, for each pair (g, g")
and each look-ahead T such that (¢,¢"”) € T' and (T',a,T) is a
look-ahead rule. E.g.

T ={(q1,92),(g3,q4)}

vo 43
o
Vi
az
V
(=) —— @
a

11/27

From D2FST to Universal Transducers

The transition rules construction

We produce a transition rule for each a € ¥, for each pair (g, g")
and each look-ahead T such that (¢,¢"”) € T' and (T',a,T) is a
look-ahead rule. E.g.

T ={(q1,92),(g3,q4)}

vo 43
o
Vi
az
V
(=) —— @
a

-
(9,9")(a) — wo(q1, g2)viva(go, g3)v3

11/27

Outline

2 - Normalizing universal transducer

12/27

Classifying Ranges of states under some look-ahead

A language [q], is
periodic if for v € L¥,

[a], < {v}”

the shortest of such v is the period 7 of [q],
almost-periodic if for some 5, € ¥*,

[alp € BA7}"

semi-periodic if for some k € N, some {(5;, ;) | i € [1..k]},
[al, € U BiAmi}*
k
strongly aperiodic (and thus, infinite) if it is not semi-periodic

13/27

The Role of Normalization of Universal Transducers

A universal transducer G with look-ahead automaton B

What ?
Find an equivalent universal transducer G' s.t. for all q, p,

lql, is either infinite periodic or strongly aperiodic

How 7
Essentially modify the look-ahead automaton B (and G
slightly)

14/27

Normalization : Example 1

Reverse

q(a) = qa
m1(p) =q q(b) 25 gb
q(<) — €

lql, = {a, b}" is strongly aperiodic

This universal transducer is normalized

15/27

Normalization : Example 2

LastFirst : >{a,b}Ta — p{a,b,c}T<

with o € {a, b
>Uo< — poclilq {a, b}

q(a) 2 qc q(b) 2 qc

7(p) =gq q(a) Ll) q a q(b) Ll) qb
q'(c) — e

[qlp = ac™ + bc™ is semi-periodic

16/27

Normalization : Example 2 - Step 1

Removing semi-periodic states :

Look-ahead refinement by splitting states according to the sum of
almost-periodic languages

lqlp, = ac* + bc*

p is splitted into p, and pp

17/27

Normalization : Example 2 - Step 1

Removing semi-periodic states :

Look-ahead refinement by splitting states according to the sum of
almost-periodic languages

lqlp, = ac* + bc*

p is splitted into p, and pp

7i(pa) = > q<
71(pp) = >q<

[alp. = ac* [qlp, = bc*

17/27

Normalization : Example 2 - Step 2

Removing almost-periodic states :

~ earliest output of longest common prefix (Icp)

- identify the first letter o4, of the lcp's of all [q],

- refine the look-ahead and then modify the transition rules to
output o4, as soon as possible

- reiterate (Icp of the [q], are shorter)

LastFirst :
g(a) 2> qc q(b) 2 qc
71(pa) =>g< q(a) LN gc q(b) LN gc
7i(pp) = q< g(a) = q'a q(b) 2> q'b

18/27

Normalization : Example 2 - Step 2

Removing almost-periodic states :

~ earliest output of longest common prefix (Icp)

- identify the first letter o4, of the Icp’s of all [q],

- refine the look-ahead and then modify the transition rules to
output o4, as soon as possible

- reiterate (Icp of the [q], are shorter)

LastFirst : Look-ahead is unchanged

71(pa) = >ag< q(a)ﬂqc q(b)ﬁ>
T/I(SZ) ;Dbcclyq q(2) —> gc q(b) 2 q
q(2) __+ € q(b)-lié €

[q]p. [qlp, are periodic of period ¢

18/27

Outline

3 - Deciding one-wayness of universal transducers

19/27

Pushing Words through Languages / States

Ideas borrowed from [Laurence, Lemay, Niehren, Staworko and
Tommasi: "Learning Sequential Tree-to-Word Transducers"]

For a word v and a language L,

Push(L,v) =L" if L.v=v.l

- L is periodic of period 7 then v = 77’ for k € N and
7 =n'n"and L' = (')~ }(L.7).

- L is strongly aperiodic then the set of v's is finite and
prefix-closed and L' = v=1(L.v)

20/27

Pushing Words through Languages / States

Ideas borrowed from [Laurence, Lemay, Niehren, Staworko and
Tommasi: "Learning Sequential Tree-to-Word Transducers"]

For a word v and a language L,

Push(L,v) =L" if Lv=v.l'
- L is periodic of period 7 then v = 7¥7’ for k € N and
7 =n'n"and L' = (')~} (L.7").
- L is strongly aperiodic then the set of v's is finite and
prefix-closed and L' = v=1(L.v)

Push({e, ab, ababab, ababababab}, aba) = {¢, ba, bababa, bababababa}
Push((ab)*, a) = (ba)*
Push(aX*,a) = X*a

20/27

Pushing Words through Languages / States

Ideas borrowed from [Laurence, Lemay, Niehren, Staworko and
Tommasi: "Learning Sequential Tree-to-Word Transducers"]

For a word v and a language L,

Push(L,v) =L" if Lv=v.l'
- L is periodic of period 7 then v = 7¥7’ for k € N and
7 =n'n"and L' = (")~} (L.7).
- L is strongly aperiodic then the set of v's is finite and
prefix-closed and L' = v=1(L.v)

Pushing Words through States under Look-ahead

Annotating states with (part of) words that are pushed through

Define syntactically Push([q]p, v) by means of a (finitely many)
new states gy together with its transition rules such that
Push([alp, v) = [g)z],

20/27

The Algorithm in a Nutshell

Compute from a universal transducer G with m copies a one-way
deterministic transducer A with look-ahead.

Ingredient:

- The look-ahead of A is the look-ahead of G
- States from A are of the form [givi ... gnva] with n < m and
such that
e the g;'s are states of G
e the v;'s remain small
e compute new states with the semantics of universal
transducers and Pushing

Small 7
Not larger than F(|G])

21/27

Running the Algorithm on Examples (1)

Reverse

q(a) =+ qa
m(p) =q q(b) 25 gb
q(<) — €

(517 —, >, P, [q]7 —, 6)

22/27

Running the Algorithm on Examples (1)

Reverse

m(p) = q

(517 >, P, [q]7 = 6)
([gl, =, a, p,[qa], =, €)

q(a) =+ qa
q(b) %+ qb
q(<) — €

22/27

Running the Algorithm on Examples (1)

Reverse

m(p) = q

(517 >, P, [Q], —, 6)
([ql, =, a, p,[qa], =, €)
([qa), =, a, p, [qaa], =, €)

q(a) =+ qa
q(b) %+ qb
q(<) — €

22/27

Running the Algorithm on Examples (1)

Reverse
q(a) = qa

m(p) =q q(b) 25 gb
q(<) — €

(517 —,>, P, [Q], —, 6)
([al, =, a, p, [qa], =€)
([qa], =, a, p, [qaa], =, €)

([qa...a],—,a,p,[qa...aa],—,¢€)

[ga...aa] larger than F(|G|) = not one-way definable

22/27

Running the Algorithm on Examples (II)

. + +
LastFirst : >{a,b}"<a — »{a b, c}’ with o € {a, b}

>uc< — poclila
(p) q(a) 2> qc q(b) 2 qc
TiI\Pa) = Paqd Pb P
a) == gc¢ b) = qgc
7i(pp) = >b g) P ’) P ’
q(a) — € q(b) — €

L . Push(q, ps, ¢) = cq
[[q]]Pa7 |[q]]Pb are periodic of period ¢ { Push(q, Pb, C) =cq

(517 —,>, Pa, [q<]]’ - Da)

23/27

Running the Algorithm on Examples (II)

LastFirst : >{a,b}Ta — p{a,b,c}T«

Iul Wlth (S {a, b}
>uo< — >ocllli«
(o2 g(a) 25 gc q(b) 25 qc
TI\Pa) = Pag< Pb Pb
a)—=qc b) —= gc
(o) = b ge q(a) ; q q(b) ; q
a(a) Lre q(b) e

Push(q, pa, c) = cq

[qlp. [qlp, are periodic of period ¢ { Push(q, pp, ¢) = cq

(517 — >, Pa, [q<]]1 -, [>a)
using g(a) =% g ¢ and pushing, [gc<] becomes c[g<]
([q<]]7 _>a a, Pa, [q<]:|7 _>a C)

23/27

Running the Algorithm on Examples (II)

LastFirst : >{a,b}Ta — p{a,b,c}T«

with o € {a, b
>Uo< — poclilg {a, b}

r(ps) = paga q(a) P gc q(b) P qc
I\Pa) — Pb Pb

a) —>=gqgc b) —= gc
(o) = b ge q(a) ' q(b) p/q

Push(q, pa, c) = cq

[qlp. [qlp, are periodic of period ¢ { Push(q, pp, ¢) = cq

(s1,—,>, Pa, [q<], =, >a)

using g(a) 22 g ¢ and pushing, [gc<] becomes c[g<]
([q<]7 _>a 2, Pa, [q<]17 _>’ C) ([q<]]7 _>7 ba Pa, [q<]17 _>’ C)
([qd],—%,a,pb,[QQ],—+,C) ([q4]7_97b7pb7[q4]7_+7c)

23/27

Running the Algorithm on Examples (II)

LastFirst : >{a,b}Ta — p{a,b,c}T«

>Uo< — poclilg with o € {3, b}
r(ps) = paga g(a) 25 gc q(b) 25 qc
I\Pa) = Pb Pb
a)—=qc b) —= gc
(o) = b ge q(a) ' q(b) p/q

Push(q, pa, c) = cq

[qlp. [qlp, are periodic of period ¢ { Push(q, pp, ¢) = cq

(s1,—,>, Pa, [q<], =, >a)

using g(a) 22 g ¢ and pushing, [gc<] becomes c[g<]
([q<]7 —, a, Pa, [q<]17 - C) ([q<]]7 _>7 ba Pa, [q<]17 - C)
(lg<], =, a, pb, [q<], =, ¢) ([q<], =, b, pp, [q<], =, €)
([q<1],—>,a, pl75F7_>’<]) ([q<]7_>7 b’ p/75F7_>7<])

23/27

To Sum up

If successful, A is of size at most 4-exponential in the size of the
input D2FST.

Guessing a failure requires only 3-exponential space.

24/27

To Sum up

If successful, A is of size at most 4-exponential in the size of the
input D2FST.

Guessing a failure requires only 3-exponential space.

Next 7

- On going : the second step of normalization is useless = drop
one exponential

- Educated guess : pushing only powers of (complete) periods
through periodic language

- (False ?) hope : technics could be adapted to (normalized)
functional 2FST.

24/27

More Example

[Al(bu1#0up<) = pallHel 24 if 6 = 2, and
[Al(bur#oun<) = pbal“laif o = b

e
a, b, #|e a, b, #a
a, ble @ a, b, #, e
> € <l >e
(i Qﬁ |
#la

a, bla

25/27

More Example

The look-ahead automaton

26/27

More Example

(5/7 —, b, Taa (1 4)<]Taa -, [>3)

(51, =5, Tp, (1.4)a™8, = >b)

((1,4)aTs, =, 0, T,, (1,4)aT2, =, ¢) for o € {a, b}
(1,4)a™, =, 0, Tp, (1.4)a™8, =, ¢) for o € {a, b}
((1* 4)<T37 _>7 aa T<17 €, _>7 <])
((1’4)qu7_>a b: T<17€7_>7<])

27/27

