Universal algorithms for parity games and nested fixpoints

ANR DELTA meeting

Marcin Jurdziński¹, <u>Rémi Morvan</u>², K. S. Thejaswini¹ June 28, 2021, in Paris!

¹University of Warwick ²École normale supérieure Paris-Saclay

Parity games ●0000		

Parity games

 $\boldsymbol{\mathcal{G}} = \langle \boldsymbol{V}, \boldsymbol{E}, \boldsymbol{V}_{\text{Even}}, \boldsymbol{V}_{\text{Odd}}, \ \boldsymbol{\pi} : \boldsymbol{V} \to \llbracket \boldsymbol{0}, \boldsymbol{d} \rrbracket \rangle$

Parity games ●0000		

Parity games

 $\mathcal{G} = \langle V, E, V_{\text{Even}}, V_{\text{Odd}}, \pi : V \to \llbracket 0, d \rrbracket \rangle$

Parity games ●0000		

Parity games

 $\mathcal{G} = \langle V, E, V_{\text{Even}}, V_{\text{Odd}}, \pi : V \to \llbracket 0, d \rrbracket \rangle$

Parity games ○●○○○		
Plays		

• Play: $(v_i)_{i \in \mathbb{N}}$ s.t. $\forall i, (v_i, v_{i+1}) \in E$.

Parity games ○●○○○		
Plays		

• Play: $(v_i)_{i \in \mathbb{N}}$ s.t. $\forall i, (v_i, v_{i+1}) \in E$.

Parity games ○●○○○		
Plays		

- Play: $(v_i)_{i \in \mathbb{N}}$ s.t. $\forall i, (v_i, v_{i+1}) \in E$.
- Even wins (v_i)_{i∈ℕ} iff the maximal priority occuring infinitely often is even.

Parity games ○●○○○		
Plays		

- Play: $(v_i)_{i \in \mathbb{N}}$ s.t. $\forall i, (v_i, v_{i+1}) \in E$.
- Even wins (v_i)_{i∈ℕ} iff the maximal priority occuring infinitely often is even.

Parity games 00●00		
Strategies		

• Memoryless strategy for Odd: $\sigma : V_{\text{Odd}} \rightharpoonup V$ s.t. $(v, \sigma(v)) \in E$ for every vertex v.

Parity games 00●00		

• Memoryless strategy for Odd: $\sigma : V_{\text{Odd}} \rightharpoonup V$ s.t. $(v, \sigma(v)) \in E$ for every vertex v.

Parity games 00●00		

• Memoryless strategy for Odd: $\sigma : V_{\text{Odd}} \rightharpoonup V$ s.t. $(v, \sigma(v)) \in E$ for every vertex v.

• A play $(v_i)_{i \in \mathbb{N}}$ is consistent with σ if $v_{i+1} = \sigma(v_i)$ whenever $\sigma(v_i)$ R. Morvan is defined.

Parity games 00●00		

• Memoryless strategy for Odd: $\sigma : V_{\text{Odd}} \rightharpoonup V$ s.t. $(v, \sigma(v)) \in E$ for every vertex v.

• A play $(v_i)_{i \in \mathbb{N}}$ is consistent with σ if $v_{i+1} = \sigma(v_i)$ whenever $\sigma(v_i)$ R. Morvan is defined.

Parity games 00●00		

• Memoryless strategy for Odd: $\sigma : V_{\text{Odd}} \rightharpoonup V$ s.t. $(v, \sigma(v)) \in E$ for every vertex v.

• A play $(v_i)_{i \in \mathbb{N}}$ is consistent with σ if $v_{i+1} = \sigma(v_i)$ whenever $\sigma(v_i)$ R. Morvan is defined.

Parity games		
00000		

Theorem: From every vertex $v_0 \in V$, one of the two players has a memoryless strategy σ such that every play consistent with σ and starting at v_0 is winning for her.

Parity games		
00000		

Theorem: From every vertex $v_0 \in V$, one of the two players has a memoryless strategy σ such that every play consistent with σ and starting at v_0 is winning for her.

Parity games		
00000		

Theorem: From every vertex $v_0 \in V$, one of the two players has a memoryless strategy σ such that every play consistent with σ and starting at v_0 is winning for her.

Theorem: From every vertex $v_0 \in V$, one of the two players has a memoryless strategy σ such that every play consistent with σ and starting at v_0 is winning for her.

Theorem: From every vertex $v_0 \in V$, one of the two players has a memoryless strategy σ such that every play consistent with σ and starting at v_0 is winning for her.

Parity games		
00000		

Theorem: From every vertex $v_0 \in V$, one of the two players has a memoryless strategy σ such that every play consistent with σ and starting at v_0 is winning for her.

Parity games		
00000		

Theorem: From every vertex $v_0 \in V$, one of the two players has a memoryless strategy σ such that every play consistent with σ and starting at v_0 is winning for her.

Parity games		
00000		

Theorem: From every vertex $v_0 \in V$, one of the two players has a memoryless strategy σ such that every play consistent with σ and starting at v_0 is winning for her.

Parity games		
00000		

Solving Parity Games:

Inputs: G: parity game,

 $v_0 \in V^{\mathcal{G}}$: vertex.

Question: Can player Even win from v_0 in G?

Parity games		
00000		

Solving Parity Games:

- Inputs: G: parity game,
 - $v_0 \in V^{\mathcal{G}}$: vertex.
- Question: Can player Even win from v_0 in G?
 - In NP \cap coNP.

Parity games		
00000		

Solving Parity Games:

- Inputs: G: parity game,
 - $v_0 \in V^{\mathcal{G}}$: vertex.

Question: Can player Even win from v_0 in G?

- In NP \cap coNP.
- Believed to be in P...

Parity games		
00000		

Solving Parity Games:

- Inputs: G: parity game,
 - $v_0 \in V^{\mathcal{G}}$: vertex.

Question: Can player Even win from v_0 in G?

- In NP \cap coNP.
- Believed to be in P...
- Best known upper bound: quasipolynomial time O(n^{log(d)})
 ['17 Calude-Jain-Khoussainov-Li-Stephan]

McNaughton-Zielonka		
00000		

McNaughton-Zielonka		
00000		

How to compute the winning vertices of Odd?

1. Identify a "small" winning set U for Odd.

McNaughton-Zielonka		
00000		

How to compute the winning vertices of Odd?

1. Identify a "small" winning set U for Odd. How???

McNaughton-Zielonka		
00000		

How to compute the winning vertices of Odd?

1. Identify a "small" winning set U for Odd. How???

McNaughton-Zielonka		
00000		

- 1. Identify a "small" winning set U for Odd. How???
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.

McNaughton-Zielonka		
•0000		

- 1. Identify a "small" winning set U for Odd. How???
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr $_{\text{Odd}}^{\mathcal{G}}(U)$.

McNaughton-Zielonka		
•0000		

- 1. Identify a "small" winning set U for Odd. How???
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr $_{\text{Odd}}^{\mathcal{G}}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.

McNaughton-Zielonka		
00000		

- 1. Identify a "small" winning set U for Odd. How???
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr $_{\text{Odd}}^{\mathcal{G}}(U)$.
- 3. Iterate: compute Odd's winning vertices in $\mathcal{G} \setminus \text{Attr}_{\text{Odd}}^{\mathcal{G}}(U)$. If R. Morvan you don't find any, stop.

McNaughton-Zielonka's algorithm: motivations

How can one identify a "small" winning set U for Odd?

McNaughton-Zielonka		
00000		

McNaughton-Zielonka's algorithm: motivations

How can one identify a "small" winning set U for Odd?

McNaughton-Zielonka's answer:

McNaughton-Zielonka		
00000		

McNaughton-Zielonka's algorithm: motivations

How can one identify a "small" winning set U for Odd?

McNaughton-Zielonka's answer:

• *d* greatest priority ; wlog. *d* is even.
McNaughton-Zielonka		
00000		

How can one identify a "small" winning set U for Odd?

McNaughton-Zielonka's answer:

- *d* greatest priority ; wlog. *d* is even.
- If Odd wins from *v*, how many vertices of priority *d* will we see?

How can one identify a "small" winning set U for Odd?

McNaughton-Zielonka's answer:

- *d* greatest priority ; wlog. *d* is even.
- If Odd wins from *v*, how many vertices of priority *d* will we see?
 - none
 - · at least one, but finitely many
 - infinitely many

How can one identify a "small" winning set U for Odd?

McNaughton-Zielonka's answer:

- *d* greatest priority ; wlog. *d* is even.
- If Odd wins from *v*, how many vertices of priority *d* will we see?
 - none
 - · at least one, but finitely many
 - infinitely many

How to compute the set of v s.t. Odd can win from v without ever seeing a vertex of priority d?

How can one identify a "small" winning set U for Odd?

McNaughton-Zielonka's answer:

- *d* greatest priority ; wlog. *d* is even.
- If Odd wins from *v*, how many vertices of priority *d* will we see?
 - none ← easy to identify!
 - at least one, but finitely many
 - infinitely many

How to compute the set of v s.t. Odd can win from v without ever seeing a vertex of priority d? It is the set of winning vertices for Odd in the game

$$\mathcal{G} \smallsetminus \operatorname{Attr}_{\operatorname{Even}}^{\mathcal{G}}(\pi^{-1}[d]).$$

McNaughton-Zielonka		
00000		

McNaughton-Zielonka		
00000		

- 1. Identify a "small" winning set U for Odd.
- **2.** Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- **2.** Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- **2.** Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- **2.** Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr $_{\text{Odd}}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted Attr $_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach *U*, denoted $\operatorname{Attr}_{Odd}^{\mathcal{G}}(U)$.
- Iterate: compute Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

• Correctness: by construction.

McNaughton-Zielonka		
00000		

- Correctness: by construction.
- Completeness: ???

McNaughton-Zielonka		
00000		

- Correctness: by construction.
- Completeness: ???

Need to prove: "if there is no vertex from which Odd can win while avoiding *d*, then there is no winning vertex for Odd".

- Correctness: by construction.
- Completeness: ???

Need to prove: "if there is no vertex from which Odd can win while avoiding d, then there is no winning vertex for Odd". Recall that : "If Odd wins from v, how many vertices of priority d will we see?

- none ← easy to identify!
- · at least one, but finitely many
- infinitely many"

- Correctness: by construction.
- Completeness: ??? by construction! Need to prove: "if there is no vertex from which Odd can win while avoiding *d*, then there is no winning vertex for Odd". Recall that : "If Odd wins from *v*, how many vertices of priority *d* will we see?
 - none ← easy to identify!
 - · at least one, but finitely many
 - infinitely many"

McNaughton-Zielonka		
00000		

- U = vertices from which Odd can win while avoiding d.
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr^Q_{Odd}(*U*).
- Iterate: compute the Odd's winning vertices in G \ AttrG(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- U = vertices from which Odd can win while avoiding d. One recursive call with fewer priorities!
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr^Q_{Odd}(*U*).
- Iterate: compute the Odd's winning vertices in G > AttrG_{Odd}(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- U = vertices from which Odd can win while avoiding d. One recursive call with fewer priorities!
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr^G_{Odd}(*U*). Computable in poly. time!
- Iterate: compute the Odd's winning vertices in G \ AttrGd(U). If you don't find any, stop.

McNaughton-Zielonka		
00000		

- U = vertices from which Odd can win while avoiding d. One recursive call with fewer priorities!
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr^G_{Odd}(*U*). Computable in poly. time!
- Iterate: compute the Odd's winning vertices in G \ Attr^G_{Odd}(U). If you don't find any, stop. How many times will we need to iterate?

McNaughton-Zielonka		
00000		

- U = vertices from which Odd can win while avoiding d. One recursive call with fewer priorities!
- Consider the set of vertices from which Odd can force the play to reach *U*, denoted Attr^G_{Odd}(*U*). Computable in poly. time!
- Iterate: compute the Odd's winning vertices in G \ AttrG_{Odd}(U). If you don't find any, stop. How many times will we need to iterate? At most n = |V|.

	Universal algorithm ●0000	

• Goal: solve a parity game whose priorities are [[0, d]].

	Universal algorithm	
	00000	

- Goal: solve a parity game whose priorities are [[0, d]].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.

	Universal algorithm	
	00000	

- Goal: solve a parity game whose priorities are [[0, d]].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.

	Universal algorithm	
	00000	

- Goal: solve a parity game whose priorities are [[0, d]].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.
- Inputs: *G*: game, *d*: top priority,

	Universal algorithm	
	00000	

- Goal: solve a parity game whose priorities are [[0, d]].
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.
- Inputs: G: game, d: top priority, T: tree of height d.

	Universal algorithm	
	•0000 ⁻	

- Goal: solve a parity game whose priorities are $[\![0,d]\!]$.
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.
- Inputs: G: game, d: top priority, T: tree of height d.

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $\operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$.
- Iterate: compute the Odd's winning vertices in G \ Attr^G_{Odd}(U).
 If you don't find any, stop.

	Universal algorithm	
	•0000 ⁻	

- Goal: solve a parity game whose priorities are $[\![0,d]\!]$.
- Principle: McNaughton-Zielonka's algorithm with fixed tree of recursive calls.
- Inputs: G: game, d: top priority, T: tree of height d.

- 1. U = vertices from which Odd can win while avoiding d.
- 2. Consider the set of vertices from which Odd can force the play to reach U, denoted $\operatorname{Attr}_{\operatorname{Odd}}^{\mathcal{G}}(U)$.
- Iterate: compute the Odd's winning vertices in *G* ∧ Attr^G_{Odd}(*U*).
 If you don't find any, stop.
 Iterate *k* times, where *k* is the number of children of the root of *T*.

	Universal algorithm ○●○○○	

McNaughton-Zielonka

Fact: McNaughton-Zielonka's algorithm corresponds to the universal algorithm over (n, d)-complete tree.

	Universal algorithm 0●000	

McNaughton-Zielonka

Fact: McNaughton-Zielonka's algorithm corresponds to the universal algorithm over (n, d)-complete tree.

Fact: Parys ('19) and Lehtinen-Schewe-Wojtczak ('19) algorithms are instances of the universal algorithm.

Fact: Parys ('19) and Lehtinen-Schewe-Wojtczak ('19) algorithms are instances of the universal algorithm.

Fact: Parys ('19) and Lehtinen-Schewe-Wojtczak ('19) algorithms are instances of the universal algorithm.

Fact: Parys ('19) and Lehtinen-Schewe-Wojtczak ('19) algorithms are instances of the universal algorithm.

n: number of vertices & *d*: top priority

	Universal algorithm	
	00000	

Universal algorithm: correctness & complexity

Time complexity of the universal algorithm over (G, d, T): polynomial in G and T.

	Universal algorithm	
	00000	

Universal algorithm: correctness & complexity

- Time complexity of the universal algorithm over (G, d, T): polynomial in G and T.
- Correctness: If \mathcal{T} is big enough, then the algorithm is correct.

	Universal algorithm	

Ordered trees

• Ordered trees: partially ordered by the "embedding" relation.

	Universal algorithm	

Ordered trees

- · Ordered trees: partially ordered by the "embedding" relation.
- Correctness: For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.

	•000	

	0000

	0000

Attractor decomposition

	0000	

Attractor decomposition (bis)

	0000	

Attractor decomposition (ter)

	Attractor decomposition	
	0000	

Attractor decomposition (ter)

	Attractor decomposition	
	0000	

Attractor decomposition (ter)

	0000	

Embeddable decomposition theorem

Theorem: If *D* is subset of the winning set *W* for Even, if Odd can force the play to stay in *D*, for every attractor decomposition tree \mathcal{T}_W of *W*, there exists an attractor decomposition tree \mathcal{T}_D of *D* such that: \mathcal{T}_D embeds in \mathcal{T}_W .

	0000	

Embeddable decomposition theorem

Theorem: If *D* is subset of the winning set *W* for Even, if Odd can force the play to stay in *D*, for every attractor decomposition tree \mathcal{T}_W of *W*, there exists an attractor decomposition tree \mathcal{T}_D of *D* such that: \mathcal{T}_D embeds in \mathcal{T}_W .

Attractor decomposition trees describe the shape of the structure of a winning region.

		Conclusion

 For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.

		Conclusion ●000

- For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.
- Take *T_G* = product of an attractor decomposition tree for Even and an attractor decomposition tree for Odd.

		Conclusion ●000

- For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.
- Take *T_G* = product of an attractor decomposition tree for Even and an attractor decomposition tree for Odd.
- Not unique.

		Conclusion ●000

- For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.
- Take *T_G* = product of an attractor decomposition tree for Even and an attractor decomposition tree for Odd.
- Not unique.
- Polynomial size!

			Conclusion 0000
Universal t	trees		

• A tree is (*n*, *d*)-universal iff every tree with at most *n* leaves and of height *d* embeds in it.

			Conclusion 0000
Universal t	trees		

- A tree is (*n*, *d*)-universal iff every tree with at most *n* leaves and of height *d* embeds in it.
- Example: (*n*, *d*)-complete tree.

		Conclusion 0●00

Universal trees

- A tree is (*n*, *d*)-universal iff every tree with at most *n* leaves and of height *d* embeds in it.
- Example: (*n*, *d*)-complete tree.

		Conclusion

Universal trees

- A tree is (*n*, *d*)-universal iff every tree with at most *n* leaves and of height *d* embeds in it.
- Example: (*n*, *d*)-complete tree.
- Example: (*n*, *d*)-succinct tree.

		Conclusion
		0000

Universal trees

- A tree is (*n*, *d*)-universal iff every tree with at most *n* leaves and of height *d* embeds in it.
- Example: (*n*, *d*)-complete tree.
- Example: (*n*, *d*)-succinct tree.

		0000

Universal trees & correctness

For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.

		0000

Universal trees & correctness

- For every game G, there exists a "small" tree T_G such that the universal algorithm is correct whenever T_G embeds in T.
- Works if $\mathcal{T}_{\mathcal{G}}$ is the product of two universal trees.

		0000

Universal trees & correctness

- For every game *G*, there exists a "small" tree *T_G* such that the universal algorithm is correct whenever *T_G* embeds in *T*.
- Works if $\mathcal{T}_{\mathcal{G}}$ is the product of two universal trees.
- This applies to McNaughton-Zielonka '98, to Parys '19 and to Lehtinen-Schewe- Wojtczak '19.

		0000

Conclusion

