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2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23
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McNaughton-Zielonka’s algorithm: correctness

• Correctness: by construction.

• Completeness:
Need to prove: “if there is no vertex from which Odd can win
while avoiding d , then there is no winning vertex for Odd”.
Recall that : “If Odd wins from v , how many vertices of priority
d will we see?

• none← easy to identify!
• at least one, but finitely many
• infinitely many”
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McNaughton-Zielonka’s algorithm: complexity

1. U = vertices from which Odd can win
while avoiding d .

One recursive call
with fewer priorities!

2. Consider the set of vertices from which
Odd can force the play to reach U,
denoted AttrGOdd (U) .

Computable in
poly. time!

3. Iterate: compute the Odd’s winning
vertices in G r AttrGOdd (U) . If you don’t
find any, stop.

How many times will we
need to iterate? At most n = |V |.

· · ·

n copies of Cn,d−1

Cn,d =

priority

d

d − 1

time
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Universal algorithm

• Goal: solve a parity game whose priorities
are J0, dK.

• Principle: McNaughton-Zielonka’s
algorithm with fixed tree of recursive calls.

• Inputs: G: game, d : top priority,

T : tree of
height d .

priority

0

1

2
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• Goal: solve a parity game whose priorities
are J0, dK.

• Principle: McNaughton-Zielonka’s
algorithm with fixed tree of recursive calls.

• Inputs: G: game, d : top priority, T : tree of
height d .

priority

0

1

2

1. U = vertices from which Odd can win while avoiding d .

2. Consider the set of vertices from which Odd can force the play to reach U, denoted
AttrGOdd (U) .

3. Iterate: compute the Odd’s winning vertices in G r AttrGOdd (U) .
If you don’t find any, stop.
Iterate k times, where k is the number of children of the root of T .

R. Morvan 11/23
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McNaughton-Zielonka

Fact: McNaughton-Zielonka’s algorithm corresponds to the
universal algorithm over (n, d)-complete tree.

· · ·

n copies of Cn,d−1

Cn,d =
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Parys & Lehtinen-Schewe-Wojtczak

Fact: Parys (’19) and Lehtinen-Schewe-Wojtczak (’19) algorithms are
instances of the universal algorithm.

· · · · · ·

b n2 c copies of P b n2 c,d−1 Pn,d−1 b n2 c copies of P b n2 c,d−1

Pn,d =

Sn,d−1S b n2 c,d S b n2 c,d

Sn,d =
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b n2 c copies of P b n2 c,d−1 Pn,d−1 b n2 c copies of P b n2 c,d−1

Pn,d =

Sn,d−1S b n2 c,d S b n2 c,d

Sn,d =

n: number of vertices & d : top priority
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Universal algorithm: correctness & complexity

• Time complexity of the universal algorithm over (G, d,T):
polynomial in G and T .

• Correctness: If T is big enough, then the algorithm is correct.
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Ordered trees

embeds in

• Ordered trees: partially ordered by the “embedding” relation.

• Correctness: For every game G, there exists a “small” tree TG
such that the universal algorithm is correct whenever TG
embeds in T .
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Aractor decomposition
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2

0

0

10

0

· · ·10

0

A0

SkSk−1S1

Ak−1 \ Sk−1A1 \ S1

· · ·
k leaves

An aractor decomposition WinEven(G) of G is a partition of the
winning set describing the structure of Even’s winning set.
[Daviaud-Jurdziński-Lehtinen, ’18]
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Aractor decomposition (bis)
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Embeddable decomposition theorem

Theorem: If D is subset of the winning setW for Even, if Odd can
force the play to stay in D, for every aractor decomposition tree
TW ofW , there exists an aractor decomposition tree TD of D such
that: TD embeds in TW .

Aractor decomposition trees describe the shape of the structure of
a winning region.

R. Morvan 19/23
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Correctness

• For every game G, there exists a “small” tree TG such that the
universal algorithm is correct whenever TG embeds in T .

• Take TG = product of an aractor decomposition tree for Even
and an aractor decomposition tree for Odd.

• Not unique.

• Polynomial size!
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Universal trees

• A tree is (n, d)-universal i every tree with at most n leaves and
of height d embeds in it.

• Example: (n, d)-complete tree.

• Example: (n, d)-succinct tree.
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Universal trees & correctness

• For every game G, there exists a “small” tree TG such that the
universal algorithm is correct whenever TG embeds in T .

• Works if TG is the product of two universal trees.

• This applies to McNaughton-Zielonka ’98, to Parys ’19 and to
Lehtinen-Schewe- Wojtczak ’19.
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