
Universal algorithms
for parity games and nested fixpoints

Anr Delta meeting

Marcin Jurdziński1, Rémi Morvan2, K. S. Thejaswini1

June 28, 2021, in Paris!

1University of Warwick
2École normale supérieure Paris-Saclay

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Parity games

0 00

1

1 11

2

G = 〈V , E,VEven,VOdd, 𝜋 : V → J0, dK〉

R. Morvan 1/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Parity games

0 00

1

1 11

2

G = 〈V , E,VEven,VOdd, 𝜋 : V → J0, dK〉

R. Morvan 1/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Parity games

0 00

1

1 11

2

G = 〈V , E,VEven,VOdd, 𝜋 : V → J0, dK〉

R. Morvan 1/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Plays

0 00

1

1 11

2

• Play: (vi)i∈ℕ s.t. ∀i, (vi, vi+1) ∈ E .

R. Morvan 2/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Plays

0 00

1

1 11

2

• Play: (vi)i∈ℕ s.t. ∀i, (vi, vi+1) ∈ E .

R. Morvan 2/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Plays

0 00

1

1 11

2

• Play: (vi)i∈ℕ s.t. ∀i, (vi, vi+1) ∈ E .
• Even wins (vi)i∈ℕ i the maximal priority occuring infinitely
oen is even.

R. Morvan 2/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Plays

0 00

1

1 11

2

• Play: (vi)i∈ℕ s.t. ∀i, (vi, vi+1) ∈ E .
• Even wins (vi)i∈ℕ i the maximal priority occuring infinitely
oen is even.

R. Morvan 2/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Strategies

0 00

1

1 11

2

𝜎

• Memoryless strategy for Odd: 𝜎 : VOdd ⇀ V s.t. (v, 𝜎 (v)) ∈ E
for every vertex v .

R. Morvan 3/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Strategies

0 00

1

1 11

2

𝜎

• Memoryless strategy for Odd: 𝜎 : VOdd ⇀ V s.t. (v, 𝜎 (v)) ∈ E
for every vertex v .

R. Morvan 3/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Strategies

0 00

1

1 11

2

𝜎

• Memoryless strategy for Odd: 𝜎 : VOdd ⇀ V s.t. (v, 𝜎 (v)) ∈ E
for every vertex v .

• A play (vi)i∈ℕ is consistent with 𝜎 if vi+1 = 𝜎 (vi) whenever 𝜎 (vi)
is defined.R. Morvan 3/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Strategies

0 00

1

1 11

2

𝜎

• Memoryless strategy for Odd: 𝜎 : VOdd ⇀ V s.t. (v, 𝜎 (v)) ∈ E
for every vertex v .

• A play (vi)i∈ℕ is consistent with 𝜎 if vi+1 = 𝜎 (vi) whenever 𝜎 (vi)
is defined.R. Morvan 3/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Strategies

0 00

1

1 11

2

𝜎

• Memoryless strategy for Odd: 𝜎 : VOdd ⇀ V s.t. (v, 𝜎 (v)) ∈ E
for every vertex v .

• A play (vi)i∈ℕ is consistent with 𝜎 if vi+1 = 𝜎 (vi) whenever 𝜎 (vi)
is defined.R. Morvan 3/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Memoryless determinacy

winning vertices

for Odd

winning vertices

for Even

0 00

1

1 11

2

𝜎

𝜎

𝜏

𝜏

Theorem: From every vertex v0 ∈ V , one of the two players has a
memoryless strategy 𝜎 such that every play consistent with 𝜎 and

starting at v0 is winning for her.
R. Morvan 4/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Memoryless determinacy

winning vertices

for Odd

winning vertices

for Even

0 00

1

1 11

2

𝜎

𝜎

𝜏

𝜏

Theorem: From every vertex v0 ∈ V , one of the two players has a
memoryless strategy 𝜎 such that every play consistent with 𝜎 and

starting at v0 is winning for her.
R. Morvan 4/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Memoryless determinacy

winning vertices

for Odd

winning vertices

for Even

0 00

1

1 11

2

𝜎

𝜎

𝜏

𝜏

Theorem: From every vertex v0 ∈ V , one of the two players has a
memoryless strategy 𝜎 such that every play consistent with 𝜎 and

starting at v0 is winning for her.
R. Morvan 4/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Memoryless determinacy

winning vertices

for Odd

winning vertices

for Even

0 00

1

1 11

2

𝜎

𝜎

𝜏

𝜏

Theorem: From every vertex v0 ∈ V , one of the two players has a
memoryless strategy 𝜎 such that every play consistent with 𝜎 and

starting at v0 is winning for her.
R. Morvan 4/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Memoryless determinacy

winning vertices

for Odd

winning vertices

for Even

0 00

1

1 11

2

𝜎

𝜎

𝜏

𝜏

Theorem: From every vertex v0 ∈ V , one of the two players has a
memoryless strategy 𝜎 such that every play consistent with 𝜎 and

starting at v0 is winning for her.
R. Morvan 4/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Memoryless determinacy

winning vertices

for Odd

winning vertices

for Even

0 00

1

1 11

2

𝜎

𝜎

𝜏

𝜏

Theorem: From every vertex v0 ∈ V , one of the two players has a
memoryless strategy 𝜎 such that every play consistent with 𝜎 and

starting at v0 is winning for her.
R. Morvan 4/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Memoryless determinacy

winning vertices

for Odd

winning vertices

for Even

0 00

1

1 11

2

𝜎

𝜎

𝜏

𝜏

Theorem: From every vertex v0 ∈ V , one of the two players has a
memoryless strategy 𝜎 such that every play consistent with 𝜎 and

starting at v0 is winning for her.
R. Morvan 4/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Memoryless determinacy

winning vertices

for Odd

winning vertices

for Even

0 00

1

1 11

2

𝜎

𝜎

𝜏

𝜏

Theorem: From every vertex v0 ∈ V , one of the two players has a
memoryless strategy 𝜎 such that every play consistent with 𝜎 and

starting at v0 is winning for her.
R. Morvan 4/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Solving parity games

Solving Parity Games:
Inputs: G: parity game,

v0 ∈ V G : vertex.
estion: Can player Even win from v0 in G?

• In NP ∩ coNP.
• Believed to be in P. . .

• Best known upper bound: quasipolynomial time O(nlog(d))
[’17 Calude-Jain-Khoussainov-Li-Stephan]

R. Morvan 5/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Solving parity games

Solving Parity Games:
Inputs: G: parity game,

v0 ∈ V G : vertex.
estion: Can player Even win from v0 in G?

• In NP ∩ coNP.

• Believed to be in P. . .

• Best known upper bound: quasipolynomial time O(nlog(d))
[’17 Calude-Jain-Khoussainov-Li-Stephan]

R. Morvan 5/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Solving parity games

Solving Parity Games:
Inputs: G: parity game,

v0 ∈ V G : vertex.
estion: Can player Even win from v0 in G?

• In NP ∩ coNP.
• Believed to be in P. . .

• Best known upper bound: quasipolynomial time O(nlog(d))
[’17 Calude-Jain-Khoussainov-Li-Stephan]

R. Morvan 5/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Solving parity games

Solving Parity Games:
Inputs: G: parity game,

v0 ∈ V G : vertex.
estion: Can player Even win from v0 in G?

• In NP ∩ coNP.
• Believed to be in P. . .

• Best known upper bound: quasipolynomial time O(nlog(d))
[’17 Calude-Jain-Khoussainov-Li-Stephan]

R. Morvan 5/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

A recursive algorithm?

AttrGOdd(U):
winning for Odd!

G

U

How to compute the winning vertices of Odd?

1. Identify a “small” winning set U for Odd.

2. Consider the set of vertices from which Odd can force the play
to reach U, denoted AttrGOdd(U).

3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U).

R. Morvan 6/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

A recursive algorithm?

AttrGOdd(U):
winning for Odd!

G

U

How to compute the winning vertices of Odd?

1. Identify a “small” winning set U for Odd.

2. Consider the set of vertices from which Odd can force the play
to reach U, denoted AttrGOdd(U).

3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U).

R. Morvan 6/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

A recursive algorithm?

AttrGOdd(U):
winning for Odd!

G

U

How to compute the winning vertices of Odd?

1. Identify a “small” winning set U for Odd. How???

2. Consider the set of vertices from which Odd can force the play
to reach U, denoted AttrGOdd(U).

3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U).

R. Morvan 6/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

A recursive algorithm?

AttrGOdd(U):
winning for Odd!

G
U

How to compute the winning vertices of Odd?

1. Identify a “small” winning set U for Odd. How???

2. Consider the set of vertices from which Odd can force the play
to reach U, denoted AttrGOdd(U).

3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U).

R. Morvan 6/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

A recursive algorithm?

AttrGOdd(U):
winning for Odd!

G
U

How to compute the winning vertices of Odd?

1. Identify a “small” winning set U for Odd. How???

2. Consider the set of vertices from which Odd can force the play
to reach U, denoted AttrGOdd(U).

3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U).

R. Morvan 6/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

A recursive algorithm?

AttrGOdd(U):
winning for Odd!

G
U

How to compute the winning vertices of Odd?

1. Identify a “small” winning set U for Odd. How???

2. Consider the set of vertices from which Odd can force the play
to reach U, denoted AttrGOdd(U).

3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U).

R. Morvan 6/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

A recursive algorithm?

AttrGOdd(U):
winning for Odd!

G
U

How to compute the winning vertices of Odd?

1. Identify a “small” winning set U for Odd. How???

2. Consider the set of vertices from which Odd can force the play
to reach U, denoted AttrGOdd(U).

3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U).

R. Morvan 6/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

A recursive algorithm?

AttrGOdd(U):
winning for Odd!

G
U

How to compute the winning vertices of Odd?

1. Identify a “small” winning set U for Odd. How???

2. Consider the set of vertices from which Odd can force the play
to reach U, denoted AttrGOdd(U).

3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If
you don’t find any, stop.R. Morvan 6/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: motivations

How can one identify a “small” winning set U for Odd?

McNaughton-Zielonka’s answer:

• d greatest priority ; wlog. d is even.
• If Odd wins from v , how many vertices of priority d will we
see?

• none
• at least one, but finitely many
•

How to compute the set of v s.t. Odd can win from v without ever
seeing a vertex of priority d? It is the set of winning vertices for Odd
in the game

G r AttrGEven(𝜋
−1 [d]).

R. Morvan 7/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: motivations

How can one identify a “small” winning set U for Odd?

McNaughton-Zielonka’s answer:

• d greatest priority ; wlog. d is even.
• If Odd wins from v , how many vertices of priority d will we
see?

• none
• at least one, but finitely many
•

How to compute the set of v s.t. Odd can win from v without ever
seeing a vertex of priority d? It is the set of winning vertices for Odd
in the game

G r AttrGEven(𝜋
−1 [d]).

R. Morvan 7/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: motivations

How can one identify a “small” winning set U for Odd?

McNaughton-Zielonka’s answer:

• d greatest priority ; wlog. d is even.

• If Odd wins from v , how many vertices of priority d will we
see?

• none
• at least one, but finitely many
•

How to compute the set of v s.t. Odd can win from v without ever
seeing a vertex of priority d? It is the set of winning vertices for Odd
in the game

G r AttrGEven(𝜋
−1 [d]).

R. Morvan 7/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: motivations

How can one identify a “small” winning set U for Odd?

McNaughton-Zielonka’s answer:

• d greatest priority ; wlog. d is even.
• If Odd wins from v , how many vertices of priority d will we
see?

• none
• at least one, but finitely many
•

How to compute the set of v s.t. Odd can win from v without ever
seeing a vertex of priority d? It is the set of winning vertices for Odd
in the game

G r AttrGEven(𝜋
−1 [d]).

R. Morvan 7/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: motivations

How can one identify a “small” winning set U for Odd?

McNaughton-Zielonka’s answer:

• d greatest priority ; wlog. d is even.
• If Odd wins from v , how many vertices of priority d will we
see?

• none
• at least one, but finitely many
• infinitely many

How to compute the set of v s.t. Odd can win from v without ever
seeing a vertex of priority d? It is the set of winning vertices for Odd
in the game

G r AttrGEven(𝜋
−1 [d]).

R. Morvan 7/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: motivations

How can one identify a “small” winning set U for Odd?

McNaughton-Zielonka’s answer:

• d greatest priority ; wlog. d is even.
• If Odd wins from v , how many vertices of priority d will we
see?

• none
• at least one, but finitely many
• infinitely many

How to compute the set of v s.t. Odd can win from v without ever
seeing a vertex of priority d?

It is the set of winning vertices for Odd
in the game

G r AttrGEven(𝜋
−1 [d]).

R. Morvan 7/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: motivations

How can one identify a “small” winning set U for Odd?

McNaughton-Zielonka’s answer:

• d greatest priority ; wlog. d is even.
• If Odd wins from v , how many vertices of priority d will we
see?

• none← easy to identify!
• at least one, but finitely many
• infinitely many

How to compute the set of v s.t. Odd can win from v without ever
seeing a vertex of priority d? It is the set of winning vertices for Odd
in the game

G r AttrGEven(𝜋
−1 [d]).

R. Morvan 7/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G

U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1.
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.

R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G

U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. Identify a “small” winning set U for Odd.
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G

U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G

U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G
U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G
U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G
U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G
U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G
U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G
U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G
U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G
U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm

Recursive algorithm. At each call: fewer priorities or fewer vertices.

Odd cannot avoid
priority d

AttrGOdd(U):
winning for Odd!

G
U: Odd can win
while avoiding
priority d

we already know
that this bit is
winning for Odd!

G

also winning for
Odd!

G

all of this is
winning for Odd‼

1. U = vertices from which Odd can win while avoiding d .
2. Consider the set of vertices from which Odd can force the play

to reach U, denoted AttrGOdd(U).
3. Iterate: compute Odd’s winning vertices in G r AttrGOdd(U). If

you don’t find any, stop.
R. Morvan 8/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: correctness

• Correctness: by construction.

• Completeness:
Need to prove: “if there is no vertex from which Odd can win
while avoiding d , then there is no winning vertex for Odd”.
Recall that : “If Odd wins from v , how many vertices of priority
d will we see?

• none← easy to identify!
• at least one, but finitely many
• infinitely many”

R. Morvan 9/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: correctness

• Correctness: by construction.

• Completeness: ???

Need to prove: “if there is no vertex from which Odd can win
while avoiding d , then there is no winning vertex for Odd”.
Recall that : “If Odd wins from v , how many vertices of priority
d will we see?

• none← easy to identify!
• at least one, but finitely many
• infinitely many”

R. Morvan 9/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: correctness

• Correctness: by construction.

• Completeness: ???
Need to prove: “if there is no vertex from which Odd can win
while avoiding d , then there is no winning vertex for Odd”.

Recall that : “If Odd wins from v , how many vertices of priority
d will we see?

• none← easy to identify!
• at least one, but finitely many
• infinitely many”

R. Morvan 9/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: correctness

• Correctness: by construction.

• Completeness: ???
Need to prove: “if there is no vertex from which Odd can win
while avoiding d , then there is no winning vertex for Odd”.
Recall that : “If Odd wins from v , how many vertices of priority
d will we see?

• none← easy to identify!
• at least one, but finitely many
• infinitely many”

R. Morvan 9/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: correctness

• Correctness: by construction.

• Completeness: ??? by construction!
Need to prove: “if there is no vertex from which Odd can win
while avoiding d , then there is no winning vertex for Odd”.
Recall that : “If Odd wins from v , how many vertices of priority
d will we see?

• none← easy to identify!
• at least one, but finitely many
• infinitely many”

R. Morvan 9/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: complexity

1. U = vertices from which Odd can win
while avoiding d .

One recursive call
with fewer priorities!

2. Consider the set of vertices from which
Odd can force the play to reach U,
denoted AttrGOdd (U) .

Computable in
poly. time!

3. Iterate: compute the Odd’s winning
vertices in G r AttrGOdd (U) . If you don’t
find any, stop.

How many times will we
need to iterate? At most n = |V |.

· · ·

n copies of Cn,d−1

Cn,d =

priority

d

d − 1

time

R. Morvan 10/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: complexity

1. U = vertices from which Odd can win
while avoiding d . One recursive call
with fewer priorities!

2. Consider the set of vertices from which
Odd can force the play to reach U,
denoted AttrGOdd (U) .

Computable in
poly. time!

3. Iterate: compute the Odd’s winning
vertices in G r AttrGOdd (U) . If you don’t
find any, stop.

How many times will we
need to iterate? At most n = |V |.

· · ·

n copies of Cn,d−1

Cn,d =

priority

d

d − 1

time

R. Morvan 10/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: complexity

1. U = vertices from which Odd can win
while avoiding d . One recursive call
with fewer priorities!

2. Consider the set of vertices from which
Odd can force the play to reach U,
denoted AttrGOdd (U) . Computable in
poly. time!

3. Iterate: compute the Odd’s winning
vertices in G r AttrGOdd (U) . If you don’t
find any, stop.

How many times will we
need to iterate? At most n = |V |.

· · ·

n copies of Cn,d−1

Cn,d =

priority

d

d − 1

time

R. Morvan 10/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: complexity

1. U = vertices from which Odd can win
while avoiding d . One recursive call
with fewer priorities!

2. Consider the set of vertices from which
Odd can force the play to reach U,
denoted AttrGOdd (U) . Computable in
poly. time!

3. Iterate: compute the Odd’s winning
vertices in G r AttrGOdd (U) . If you don’t
find any, stop. How many times will we
need to iterate?

At most n = |V |.

· · ·

n copies of Cn,d−1

Cn,d =

priority

d

d − 1

time

R. Morvan 10/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka’s algorithm: complexity

1. U = vertices from which Odd can win
while avoiding d . One recursive call
with fewer priorities!

2. Consider the set of vertices from which
Odd can force the play to reach U,
denoted AttrGOdd (U) . Computable in
poly. time!

3. Iterate: compute the Odd’s winning
vertices in G r AttrGOdd (U) . If you don’t
find any, stop. How many times will we
need to iterate? At most n = |V |.

· · ·

n copies of Cn,d−1

Cn,d =

priority

d

d − 1

time

R. Morvan 10/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal algorithm

• Goal: solve a parity game whose priorities
are J0, dK.

• Principle: McNaughton-Zielonka’s
algorithm with fixed tree of recursive calls.

• Inputs: G: game, d : top priority,

T : tree of
height d .

priority

0

1

2

R. Morvan 11/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal algorithm

• Goal: solve a parity game whose priorities
are J0, dK.

• Principle: McNaughton-Zielonka’s
algorithm with fixed tree of recursive calls.

• Inputs: G: game, d : top priority,

T : tree of
height d .

priority

0

1

2

R. Morvan 11/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal algorithm

• Goal: solve a parity game whose priorities
are J0, dK.

• Principle: McNaughton-Zielonka’s
algorithm with fixed tree of recursive calls.

• Inputs: G: game, d : top priority,

T : tree of
height d .

priority

0

1

2

R. Morvan 11/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal algorithm

• Goal: solve a parity game whose priorities
are J0, dK.

• Principle: McNaughton-Zielonka’s
algorithm with fixed tree of recursive calls.

• Inputs: G: game, d : top priority,

T : tree of
height d .

priority

0

1

2

R. Morvan 11/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal algorithm

• Goal: solve a parity game whose priorities
are J0, dK.

• Principle: McNaughton-Zielonka’s
algorithm with fixed tree of recursive calls.

• Inputs: G: game, d : top priority, T : tree of
height d .

priority

0

1

2

R. Morvan 11/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal algorithm

• Goal: solve a parity game whose priorities
are J0, dK.

• Principle: McNaughton-Zielonka’s
algorithm with fixed tree of recursive calls.

• Inputs: G: game, d : top priority, T : tree of
height d .

priority

0

1

2

1. U = vertices from which Odd can win while avoiding d .

2. Consider the set of vertices from which Odd can force the play to reach U, denoted
AttrGOdd (U) .

3. Iterate: compute the Odd’s winning vertices in G r AttrGOdd (U) .
If you don’t find any, stop.

R. Morvan 11/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal algorithm

• Goal: solve a parity game whose priorities
are J0, dK.

• Principle: McNaughton-Zielonka’s
algorithm with fixed tree of recursive calls.

• Inputs: G: game, d : top priority, T : tree of
height d .

priority

0

1

2

1. U = vertices from which Odd can win while avoiding d .

2. Consider the set of vertices from which Odd can force the play to reach U, denoted
AttrGOdd (U) .

3. Iterate: compute the Odd’s winning vertices in G r AttrGOdd (U) .
If you don’t find any, stop.
Iterate k times, where k is the number of children of the root of T .

R. Morvan 11/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka

Fact: McNaughton-Zielonka’s algorithm corresponds to the
universal algorithm over (n, d)-complete tree.

· · ·

n copies of Cn,d−1

Cn,d =

R. Morvan 12/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

McNaughton-Zielonka

Fact: McNaughton-Zielonka’s algorithm corresponds to the
universal algorithm over (n, d)-complete tree.

· · ·

n copies of Cn,d−1

Cn,d =

R. Morvan 12/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Parys & Lehtinen-Schewe-Wojtczak

Fact: Parys (’19) and Lehtinen-Schewe-Wojtczak (’19) algorithms are
instances of the universal algorithm.

· · · · · ·

b n2 c copies of P b n2 c,d−1 Pn,d−1 b n2 c copies of P b n2 c,d−1

Pn,d =

Sn,d−1S b n2 c,d S b n2 c,d

Sn,d =

R. Morvan 13/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Parys & Lehtinen-Schewe-Wojtczak

Fact: Parys (’19) and Lehtinen-Schewe-Wojtczak (’19) algorithms are
instances of the universal algorithm.

· · · · · ·

b n2 c copies of P b n2 c,d−1 Pn,d−1 b n2 c copies of P b n2 c,d−1

Pn,d =

Sn,d−1S b n2 c,d S b n2 c,d

Sn,d =

R. Morvan 13/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Parys & Lehtinen-Schewe-Wojtczak

Fact: Parys (’19) and Lehtinen-Schewe-Wojtczak (’19) algorithms are
instances of the universal algorithm.

· · · · · ·

b n2 c copies of P b n2 c,d−1 Pn,d−1 b n2 c copies of P b n2 c,d−1

Pn,d =

Sn,d−1S b n2 c,d S b n2 c,d

Sn,d =

R. Morvan 13/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Parys & Lehtinen-Schewe-Wojtczak

Fact: Parys (’19) and Lehtinen-Schewe-Wojtczak (’19) algorithms are
instances of the universal algorithm.

· · · · · ·

b n2 c copies of P b n2 c,d−1 Pn,d−1 b n2 c copies of P b n2 c,d−1

Pn,d =

Sn,d−1S b n2 c,d S b n2 c,d

Sn,d =

n: number of vertices & d : top priority

R. Morvan 13/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal algorithm: correctness & complexity

• Time complexity of the universal algorithm over (G, d,T):
polynomial in G and T .

• Correctness: If T is big enough, then the algorithm is correct.

R. Morvan 14/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal algorithm: correctness & complexity

• Time complexity of the universal algorithm over (G, d,T):
polynomial in G and T .

• Correctness: If T is big enough, then the algorithm is correct.

R. Morvan 14/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Ordered trees

embeds in

• Ordered trees: partially ordered by the “embedding” relation.

• Correctness: For every game G, there exists a “small” tree TG
such that the universal algorithm is correct whenever TG
embeds in T .

R. Morvan 15/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Ordered trees

embeds in

• Ordered trees: partially ordered by the “embedding” relation.

• Correctness: For every game G, there exists a “small” tree TG
such that the universal algorithm is correct whenever TG
embeds in T .

R. Morvan 15/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition

2

2

0

0

10

0

· · ·10

0

A0

SkSk−1S1

Ak−1 \ Sk−1A1 \ S1

· · ·
k leaves

An aractor decomposition WinEven(G) of G is a partition of the
winning set describing the structure of Even’s winning set.
[Daviaud-Jurdziński-Lehtinen, ’18]

R. Morvan 16/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition

2

2

0

0

10

0

· · ·10

0

A0

SkSk−1S1

Ak−1 \ Sk−1A1 \ S1

· · ·
k leaves

An aractor decomposition WinEven(G) of G is a partition of the
winning set describing the structure of Even’s winning set.
[Daviaud-Jurdziński-Lehtinen, ’18]

R. Morvan 16/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition

2

2

0

0

10

0

· · ·10

0

A0

SkSk−1

S1

Ak−1 \ Sk−1A1 \ S1

· · ·
k leaves

An aractor decomposition WinEven(G) of G is a partition of the
winning set describing the structure of Even’s winning set.
[Daviaud-Jurdziński-Lehtinen, ’18]

R. Morvan 16/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition

2

2

0

0

10

0

· · ·10

0

A0

SkSk−1

S1

Ak−1 \ Sk−1

A1 \ S1

· · ·
k leaves

An aractor decomposition WinEven(G) of G is a partition of the
winning set describing the structure of Even’s winning set.
[Daviaud-Jurdziński-Lehtinen, ’18]

R. Morvan 16/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition

2

2

0

0

10

0

· · ·10

0

A0

Sk

Sk−1S1

Ak−1 \ Sk−1

A1 \ S1

· · ·
k leaves

An aractor decomposition WinEven(G) of G is a partition of the
winning set describing the structure of Even’s winning set.
[Daviaud-Jurdziński-Lehtinen, ’18]

R. Morvan 16/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition

2

2

0

0

10

0

· · ·10

0

A0

Sk

Sk−1S1

Ak−1 \ Sk−1A1 \ S1

· · ·
k leaves

An aractor decomposition WinEven(G) of G is a partition of the
winning set describing the structure of Even’s winning set.
[Daviaud-Jurdziński-Lehtinen, ’18]

R. Morvan 16/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition

2

2

0

0

10

0

· · ·10

0

A0

SkSk−1S1

Ak−1 \ Sk−1A1 \ S1

· · ·
k leaves

An aractor decomposition WinEven(G) of G is a partition of the
winning set describing the structure of Even’s winning set.
[Daviaud-Jurdziński-Lehtinen, ’18]

R. Morvan 16/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition (bis)

A0

S1

A1 \ S1

S2

A2 \ S2

· · ·

· · ·
Sk

Ak \ Sk

R. Morvan 17/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition (ter)

0 0 0

000

0 0 0

000

1

1

3

3

5

R. Morvan 18/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition (ter)

0 0 0

000

0 0 0

000

1

1

3

3

5

R. Morvan 18/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Aractor decomposition (ter)

0 0 0

000

0 0 0

000

1

1

3

3

5

R. Morvan 18/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Embeddable decomposition theorem

Theorem: If D is subset of the winning setW for Even, if Odd can
force the play to stay in D, for every aractor decomposition tree
TW ofW , there exists an aractor decomposition tree TD of D such
that: TD embeds in TW .

Aractor decomposition trees describe the shape of the structure of
a winning region.

R. Morvan 19/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Embeddable decomposition theorem

Theorem: If D is subset of the winning setW for Even, if Odd can
force the play to stay in D, for every aractor decomposition tree
TW ofW , there exists an aractor decomposition tree TD of D such
that: TD embeds in TW .
Aractor decomposition trees describe the shape of the structure of
a winning region.

R. Morvan 19/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Correctness

• For every game G, there exists a “small” tree TG such that the
universal algorithm is correct whenever TG embeds in T .

• Take TG = product of an aractor decomposition tree for Even
and an aractor decomposition tree for Odd.

• Not unique.

• Polynomial size!

R. Morvan 20/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Correctness

• For every game G, there exists a “small” tree TG such that the
universal algorithm is correct whenever TG embeds in T .

• Take TG = product of an aractor decomposition tree for Even
and an aractor decomposition tree for Odd.

• Not unique.

• Polynomial size!

R. Morvan 20/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Correctness

• For every game G, there exists a “small” tree TG such that the
universal algorithm is correct whenever TG embeds in T .

• Take TG = product of an aractor decomposition tree for Even
and an aractor decomposition tree for Odd.

• Not unique.

• Polynomial size!

R. Morvan 20/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Correctness

• For every game G, there exists a “small” tree TG such that the
universal algorithm is correct whenever TG embeds in T .

• Take TG = product of an aractor decomposition tree for Even
and an aractor decomposition tree for Odd.

• Not unique.

• Polynomial size!

R. Morvan 20/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal trees

• A tree is (n, d)-universal i every tree with at most n leaves and
of height d embeds in it.

• Example: (n, d)-complete tree.

• Example: (n, d)-succinct tree.

R. Morvan 21/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal trees

• A tree is (n, d)-universal i every tree with at most n leaves and
of height d embeds in it.

• Example: (n, d)-complete tree.

• Example: (n, d)-succinct tree.

R. Morvan 21/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal trees

• A tree is (n, d)-universal i every tree with at most n leaves and
of height d embeds in it.

• Example: (n, d)-complete tree.

• Example: (n, d)-succinct tree.

· · ·

n copies of Cn,d−1

Cn,d =

R. Morvan 21/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal trees

• A tree is (n, d)-universal i every tree with at most n leaves and
of height d embeds in it.

• Example: (n, d)-complete tree.

• Example: (n, d)-succinct tree.

· · ·

n copies of Cn,d−1

Cn,d =

R. Morvan 21/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal trees

• A tree is (n, d)-universal i every tree with at most n leaves and
of height d embeds in it.

• Example: (n, d)-complete tree.

• Example: (n, d)-succinct tree.

Sn,d−1S b n2 c,d S b n2 c,d

Sn,d =

R. Morvan 21/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal trees & correctness

• For every game G, there exists a “small” tree TG such that the
universal algorithm is correct whenever TG embeds in T .

• Works if TG is the product of two universal trees.

• This applies to McNaughton-Zielonka ’98, to Parys ’19 and to
Lehtinen-Schewe- Wojtczak ’19.

R. Morvan 22/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal trees & correctness

• For every game G, there exists a “small” tree TG such that the
universal algorithm is correct whenever TG embeds in T .

• Works if TG is the product of two universal trees.

• This applies to McNaughton-Zielonka ’98, to Parys ’19 and to
Lehtinen-Schewe- Wojtczak ’19.

R. Morvan 22/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Universal trees & correctness

• For every game G, there exists a “small” tree TG such that the
universal algorithm is correct whenever TG embeds in T .

• Works if TG is the product of two universal trees.

• This applies to McNaughton-Zielonka ’98, to Parys ’19 and to
Lehtinen-Schewe- Wojtczak ’19.

R. Morvan 22/23

Parity games McNaughton-Zielonka Universal algorithm Aractor decomposition Conclusion

Conclusion

R. Morvan 23/23

	Parity games
	McNaughton-Zielonka
	Universal algorithm
	Attractor decomposition
	Conclusion

